Cardiovascular Diabetology | |
Interplay between ultrastructural findings and atherothrombotic complications in type 2 diabetes mellitus | |
Etheresia Pretorius1  Prashilla Soma1  | |
[1] Department of Physiology, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa | |
关键词: Atherosclerosis; Erythrocytes; Fibrin; Platelets; Morphology; Diabetes; | |
Others : 1223758 DOI : 10.1186/s12933-015-0261-9 |
|
received in 2015-07-02, accepted in 2015-07-19, 发布年份 2015 | |
【 摘 要 】
Accelerated atherosclerosis is the main underlying factor contributing to the high risk of atherothrombotic events in patients with diabetes mellitus and atherothrombotic complications are the main cause of mortality. Like with many bodily systems, pathology is observed when the normal processes are exaggerated or uncontrolled. This applies to the processes of coagulation and thrombosis as well. In diabetes, in fact, the balance between prothrombotic and fibrinolytic factors is impaired and thus the scale is tipped towards a prothrombotic and hypofibrinolytic milieu, which in association with the vascular changes accompanying plaque formation and ruptures, increases the prevalence of ischaemic events such as angina and myocardial infarction. Apart from traditional, modifiable risk factors for cardiovascular disease like hypertension, smoking, elevated cholesterol; rheological properties, endogenous fibrinolysis and impaired platelet activity are rapidly gaining significance in the pathogenesis of atherosclerosis especially in diabetic subjects. Blood clot formation represents the last step in the athero-thrombotic process, and the structure of the fibrin network has a role in determining predisposition to cardiovascular disease. It is no surprise that just like platelets and fibrin networks, erythrocytes have been shown to play a role in coagulation as well. This is in striking contrast to their traditional physiological role of oxygen transport. In fact, emerging evidence suggests that erythrocytes enhance functional coagulation properties and platelet aggregation. Among the spectrum of haematological abnormalities in diabetes, erythrocyte aggregation and decreased deformability of erythrocytes predominate. More importantly, they are implicated in the pathogenesis of microvascular complications of diabetes. The morphology of platelets, fibrin networks and erythrocytes are thus essential role players in unravelling the pathogenesis of cardiovascular complications in diabetic subjects.
【 授权许可】
2015 Soma and Pretorius.
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
20150904053319807.pdf | 1520KB | download | |
Fig.2. | 126KB | Image | download |
Fig.1. | 50KB | Image | download |
【 图 表 】
Fig.1.
Fig.2.
【 参考文献 】
- [1]van Rooy MJ, Pretorius E. Obesity, hypertension and hypercholesterolemia as risk factors for atherosclerosis leading to ischemic events. Curr Med Chem. 2014; 21(19):2121-2129.
- [2]Colwell JA, Nesto RW. The platelet in diabetes: focus on prevention of ischemic events. Diabetes Care. 2003; 26(7):2181-2188.
- [3]Creager MA, Luscher TF, Cosentino F, Beckman JA. Diabetes and vascular disease: pathophysiology, clinical consequences, and medical therapy: part I. Circulation. 2003; 108(12):1527-1532.
- [4]Kluft C, Jespersen J. Review: diabetes as a procoagulant condition. Br J Diabetes Vasc Dis. 2002; 2(5):358-362.
- [5]van Rooy MJ, Pretorius E. Metabolic syndrome, platelet activation and the development of transient ischemic attack or thromboembolic stroke. Thromb Res. 2015; 135(3):434-442.
- [6]Ferreiro JL, Gomez-Hospital JA, Angiolillo DJ. Platelet abnormalities in diabetes mellitus. Diabetes Vasc Dis Res. 2010; 7(4):251-259.
- [7]Blair P, Flaumenhaft R. Platelet alpha-granules: basic biology and clinical correlates. Blood Rev. 2009; 23(4):177-189.
- [8]Lesurtel M, Graf R, Aleil B, Walther DJ, Tian Y, Jochum W et al.. Platelet-derived serotonin mediates liver regeneration. Science (New York, NY). 2006; 312(5770):104-107.
- [9]Heemskerk JW, Bevers EM, Lindhout T. Platelet activation and blood coagulation. Thromb Haemost. 2002; 88(2):186-193.
- [10]Rosing J, van Rijn JL, Bevers EM, van Dieijen G, Comfurius P, Zwaal RF. The role of activated human platelets in prothrombin and factor X activation. Blood. 1985; 65(2):319-332.
- [11]Eibl N, Krugluger W, Streit G, Schrattbauer K, Hopmeier P, Schernthaner G. Improved metabolic control decreases platelet activation markers in patients with type-2 diabetes. Eur J Clin Invest. 2004; 34(3):205-209.
- [12]Tschoepe D, Schultheiss HP, Kolarov P, Schwippert B, Dannehl K, Nieuwenhuis HK et al.. Platelet membrane activation markers are predictive for increased risk of acute ischemic events after PTCA. Circulation. 1993; 88(1):37-42.
- [13]Vinik AI, Erbas T, Park TS, Nolan R, Pittenger GL. Platelet dysfunction in type 2 diabetes. Diabetes Care. 2001; 24(8):1476-1485.
- [14]Sobol AB, Watala C. The role of platelets in diabetes-related vascular complications. Diabetes Res Clin Pract. 2000; 50(1):1-16.
- [15]Pretorius E, Oberholzer HM, van der Spuy WJ, Swanepoel AC, Soma P. Qualitative scanning electron microscopy analysis of fibrin networks and platelet abnormalities in diabetes. Blood Coagul Fibrinolysis Int J Haemost Thromb. 2011; 22(6):463-467.
- [16]Burnier L, Fontana P, Kwak BR, Angelillo-Scherrer A. Cell-derived microparticles in haemostasis and vascular medicine. Thromb Haemost. 2009; 101(3):439-451.
- [17]Morel O, Toti F, Hugel B, Bakouboula B, Camoin-Jau L, Dignat-George F et al.. Procoagulant microparticles: disrupting the vascular homeostasis equation? Arterioscler Thromb Vasc Biol. 2006; 26(12):2594-2604.
- [18]Alzahrani SH, Ajjan RA. Coagulation and fibrinolysis in diabetes. Diabetes Vasc Dis Res. 2010; 7(4):260-273.
- [19]Fatah K, Silveira A, Tornvall P, Karpe F, Blomback M, Hamsten A. Proneness to formation of tight and rigid fibrin gel structures in men with myocardial infarction at a young age. Thromb Haemost. 1996; 76(4):535-540.
- [20]Swanepoel AC, Nielsen VG, Pretorius E. Viscoelasticity and ultrastructure in coagulation and inflammation: two diverse techniques, one conclusion. Inflammation. 2015; 38(4):1707-1726.
- [21]Kell DB, Pretorius E. The simultaneous occurrence of both hypercoagulability and hypofibrinolysis in blood and serum during systemic inflammation, and the roles of iron and fibrin(ogen). Integr Biol Quant Biosci Nano Macro. 2015; 7(1):24-52.
- [22]Boden G, Vaidyula VR, Homko C, Cheung P, Rao AK. Circulating tissue factor procoagulant activity and thrombin generation in patients with type 2 diabetes: effects of insulin and glucose. J Clin Endocrinol Metab. 2007; 92(11):4352-4358.
- [23]Breitenstein A, Tanner FC, Luscher TF. Tissue factor and cardiovascular disease: quo vadis? Circ J. 2010; 74(1):3-12.
- [24]Undas A, Wiek I, Stepien E, Zmudka K, Tracz W. Hyperglycemia is associated with enhanced thrombin formation, platelet activation, and fibrin clot resistance to lysis in patients with acute coronary syndrome. Diabetes Care. 2008; 31(8):1590-1595.
- [25]Corrado E, Rizzo M, Coppola G, Fattouch K, Novo G, Marturana I et al.. An update on the role of markers of inflammation in atherosclerosis. J Atheroscler Thromb. 2010; 17(1):1-11.
- [26]Jorneskog G, Egberg N, Fagrell B, Fatah K, Hessel B, Johnsson H et al.. Altered properties of the fibrin gel structure in patients with IDDM. Diabetologia. 1996; 39(12):1519-1523.
- [27]Marchi-Cappelletti R, Suarez-Nieto N. Preliminary study of the fibrin structure in hypertensive, dyslipidemic and type 2 diabetic patients. Invest Clin. 2010; 51(3):315-324.
- [28]Pieters M, Covic N, van der Westhuizen FH, Nagaswami C, Baras Y, Toit Loots D. Glycaemic control improves fibrin network characteristics in type 2 diabetes—a purified fibrinogen model. Thromb Haemost. 2008; 99(4):691-700.
- [29]Balasubramaniam K, Viswanathan GN, Marshall SM, Zaman AG. Increased atherothrombotic burden in patients with diabetes mellitus and acute coronary syndrome: a review of antiplatelet therapy. Cardiol Res Pract. 2012; 2012:909154.
- [30]Brown GE, Ritter LS, McDonagh PF, Cohen Z (2014) Functional enhancement of platelet activation and aggregation by erythrocytes: role of red cells in thrombosis. Peer J PrePrints 2:e351v351
- [31]Virmani R, Roberts WC. Extravasated erythrocytes, iron, and fibrin in atherosclerotic plaques of coronary arteries in fatal coronary heart disease and their relation to luminal thrombus: frequency and significance in 57 necropsy patients and in 2958 five mm segments of 224 major epicardial coronary arteries. Am Heart J. 1983; 105(5):788-797.
- [32]Mahindrakar YS, Suryakar AN, Ankush RD, Katkam RV, Kumbhar KM. Comparison between erythrocyte hemoglobin and spectrin glycosylation and role of oxidative stress in type-2 diabetes mellitus. Indian J Clin Biochem. 2007; 22(1):91-94.
- [33]Os D. Rheological and electrical behaviour of erythrocytes in patients with diabetes mellitus. Rom J Biophys. 2009; 19(14):239-250.
- [34]Gersh KC, Nagaswami C, Weisel JW. Fibrin network structure and clot mechanical properties are altered by incorporation of erythrocytes. Thromb Haemost. 2009; 102(6):1169-1175.
- [35]Wohner N. Role of cellular elements in thrombus formation and dissolution. Cardiovasc Hematol Agents Med Chem. 2008; 6(3):224-228.
- [36]Schmid-Schonbein H, Wells R, Goldstone J. Influence of deformability of human red cells upon blood viscosity. Circ Res. 1969; 25(2):131-143.
- [37]Baynes JW. Role of oxidative stress in development of complications in diabetes. Diabetes. 1991; 40(4):405-412.
- [38]Arbustini E. Total erythrocyte membrane cholesterol: an innocent new marker or an active player in acute coronary syndromes? J Am Coll Cardiol. 2007; 49(21):2090-2092.
- [39]Davies MJ. Stability and instability: two faces of coronary atherosclerosis. the Paul Dudley White Lecture 1995. Circulation. 1996; 94(8):2013-2020.
- [40]Schwartz RS, Madsen JW, Rybicki AC, Nagel RL. Oxidation of spectrin and deformability defects in diabetic erythrocytes. Diabetes. 1991; 40(6):701-708.
- [41]Kowluru R, Bitensky MW, Kowluru A, Dembo M, Keaton PA, Buican T. Reversible sodium pump defect and swelling in the diabetic rat erythrocyte: effects on filterability and implications for microangiopathy. Proc Natl Acad Sci USA. 1989; 86(9):3327-3331.
- [42]Singh M, Shin S. Changes in erythrocyte aggregation and deformability in diabetes mellitus: a brief review. Indian J Exp Biol. 2009; 47(1):7-15.
- [43]Rizvi SI, Zaid MA, Anis R, Mishra N. Protective role of tea catechins against oxidation-induced damage of type 2 diabetic erythrocytes. Clin Exp Pharmacol Physiol. 2005; 32(1–2):70-75.
- [44]Srour Bilto YY, Juma M, Irhimeh MR. Exposure of human erythrocytes to oxygen radicals causes loss of deformability, increased osmotic fragility, lipid peroxidation and protein degradation. Clin Hemorheol Microcirc. 2000; 23(1):13-21.
- [45]Vahalkar GS, Haldankar VA. RBC membrane composition in insulin dependent diabetes mellitus in context of oxidative stress. Indian J Clin Biochem. 2008; 23(3):223-226.
- [46]Buys AV, Van Rooy MJ, Soma P, Van Papendorp D, Lipinski B, Pretorius E. Changes in red blood cell membrane structure in type 2 diabetes: a scanning electron and atomic force microscopy study. Cardiovasc Diabetol. 2013; 12:25.
- [47]Shin S, Ku Y, Babu N, Singh M. Erythrocyte deformability and its variation in diabetes mellitus. Indian J Exp Biol. 2007; 45(1):121-128.
- [48]McMurchie EJ, Raison JK. Membrane lipid fluidity and its effect on the activation energy of membrane-associated enzymes. Biochim Biophys Acta. 1979; 554(2):364-374.
- [49]Wali RK, Jaffe S, Kumar D, Kalra VK. Alterations in organization of phospholipids in erythrocytes as factor in adherence to endothelial cells in diabetes mellitus. Diabetes. 1988; 37(1):104-111.
- [50]Lipinski B, Pretorius E. Novel pathway of ironinduced blood coagulation: implications for diabetes mellitus and its complications. Pol Arch Med Wewn. 2012; 122(3):115-122.
- [51]Pretorius E. The adaptability of red blood cells. Cardiovasc Diabetol. 2013; 12:63.
- [52]Lipinski B, Pretorius E, Oberholzer HM, Van Der Spuy WJ. Iron enhances generation of fibrin fibers in human blood: implications for pathogenesis of stroke. Microsc Res Tech. 2012; 75(9):1185-1190.
- [53]Pretorius E, Kell DB. Diagnostic morphology: biophysical indicators for iron-driven inflammatory diseases. Integr Biol Quant Biosci Nano Macro. 2014; 6(5):486-510.
- [54]Pretorius E, Lipinski B. Iron alters red blood cell morphology. Blood. 2013; 121(1):9.
- [55]Pretorius E, Vermeulen N, Bester J. Atypical erythrocytes and platelets in a patient with a pro-thrombin mutation. Platelets. 2014; 25(6):461-462.
- [56]Pretorius E, Lipinski B. Thromboembolic ischemic stroke changes red blood cell morphology. Cardiovasc Pathol. 2013; 22(3):241-242.
- [57]Atici AG, Kayhan S, Aydin D, Yilmaz YA. Plasma viscosity levels in pulmonary thromboembolism. Clin Hemorheol Microcirc. 2013; 55(3):313-320.
- [58]Baskurt OK, Meiselman HJ. Erythrocyte aggregation: basic aspects and clinical importance. Clin Hemorheol Microcirc. 2013; 53(1–2):23-37.
- [59]Holsworth RE, Cho YI, Weidman JJ, Sloop GD. St Cyr JA: Cardiovascular benefits of phlebotomy: relationship to changes in hemorheological variables. Perfusion. 2014; 29(2):102-116.