Journal of Biomedical Science | |
Association between risk of oral precancer and genetic variations in microRNA and related processing genes | |
Bidyut Roy1  Indranil Mukhopadhyay1  Anindita Ray1  Ranjan R Paul2  Sandip Ghose2  Navonil De Sarkar1  Roshni Roy1  | |
[1] Human Genetics Unit, Indian Statistical Institute, 203, B.T. Road, Kolkata 700108, India;Oral Pathology Department, Guru Nanak Institute of Dental Science and Research, 157/F Nilganj Road, Kolkata 700114, India | |
关键词: Gene expression; MDR; DNA sequence variation; miRNA; Oral leukoplakia; | |
Others : 817516 DOI : 10.1186/1423-0127-21-48 |
|
received in 2014-03-28, accepted in 2014-05-10, 发布年份 2014 | |
【 摘 要 】
Background
MicroRNAs have been implicated in cancer but studies on their role in precancer, such as leukoplakia, are limited. Sequence variations at eight miRNA and four miRNA processing genes were studied in 452 healthy controls and 299 leukoplakia patients to estimate risk of disease.
Results
Genotyping by TaqMan assay followed by statistical analyses showed that variant genotypes at Gemin3 and mir-34b reduced risk of disease [OR = 0.5(0.3–0.9) and OR = 0.7(0.5–0.9) respectively] in overall patients as well as in smokers [OR = 0.58(0.3–1) and OR = 0.68(0.5–0.9) respectively]. Among chewers, only mir29a significantly increased risk of disease [OR = 1.8(1–3)]. Gene-environment interactions using MDR-pt program revealed that mir29a, mir34b, mir423 and Xpo5 modulated risk of disease (p < 0.002) which may be related to change in expression of these genes as observed by Real-Time PCR assays. But association between polymorphisms and gene expressions was not found in our sample set as well as in larger datasets from open access platforms like Genevar and 1000 Genome database.
Conclusion
Variations in microRNAs and their processing genes modulated risk of precancer but further in-depth study is needed to understand mechanism of disease process.
【 授权许可】
2014 Roy et al.; licensee BioMed Central Ltd.
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
20140711005734430.pdf | 438KB | download | |
Figure 1. | 77KB | Image | download |
【 图 表 】
Figure 1.
【 参考文献 】
- [1]Leukoplakia Report [http://screening.iarc.fr/atlasoral_list.php?%20cat=Az&lang=1 webcite]
- [2]Reddi SP, Shafer AT: Oral premalignant lesions: management considerations. Oral Maxillofac Surg Clin 2006, 18:425-433.
- [3]Liu W, Shi LJ, Wu L, Feng JQ, Yang X, Li J, Zhou ZT, Zhang CP: Oral cancer development in patients with leukoplakia–clinicopathological factors affecting outcome. PLoS One 2012, 7:e34773.
- [4]Gupta PC, Bhonsle RB, Murti PR, Daftary DK, Mehta FS, Pindborg JJ: An epidemiologic assessment of cancer risk in oral precancerous lesions in India with special reference to nodular leukoplakia. Cancer 1989, 63:2247-2252.
- [5]Wilfred BR, Wang WX, Nelson PT: Energizing miRNA research: a review of the role of miRNAs in lipid metabolism, with a prediction that miR-103/107 regulates human metabolic pathways. Mol Genet Metab 2007, 91:209-217.
- [6]Ambros V: The functions of animal microRNAs. Nature 2004, 431:350-355.
- [7]Bartel B: MicroRNAs directing siRNA biogenesis. Nat Struct Mol Biol 2005, 12:569-571.
- [8]Vasudevan S, Tong Y, Steitz JA: Switching from repression to activation: microRNAs can up-regulate translation. Science 2007, 318:1931-1934.
- [9]Kim VN: MicroRNA biogenesis: coordinated cropping and dicing. Nat Rev Mol Cell Biol 2005, 6:376-385.
- [10]Kozomara A, Griffiths-Jones S: miRBase: annotating high confidence microRNAs using deep sequencing data. Nucleic Acids Res 2014, 42:D68-D73.
- [11]Ryan BM, Robles AI, Harris CC: Genetic variation in microRNA networks: the implications for cancer research. Nat Rev Cancer 2010, 10:389-402.
- [12]Majumder M, Sikdar N, Ghosh S, Roy B: Polymorphisms at XPD and XRCC1 DNA repair loci and increased risk of oral leukoplakia and cancer among NAT2 slow acetylators. Int J Cancer 2007, 120:2148-2156.
- [13]Roy R, De Sarkar N, Ghose S, Paul RR, Pal M, Bhattacharya C, Chowdhury SK, Ghosh S, Roy B: Genetic variations at microRNA and processing genes and risk of oral cancer. Tumor Biol 2013, 35:3409-3414.
- [14]Miller SA, Dykes DD, Polesky HF: A simple salting out procedure for extracting DNA from human nucleated cells. Nucleic Acids Res 1988, 16:1215.
- [15]Clague J, Lippman SM, Yang H, Hildebrandt MA, Ye Y, Lee JJ, Wu X: Genetic variation in MicroRNA genes and risk of oral premalignant lesions. Mol Carcinog 2010, 49:183-189.
- [16]Ye Y, Wang KK, Gu J, Yang H, Lin J, Ajani JA, Wu X: Genetic variations in microRNA-related genes are novel susceptibility loci for esophageal cancer risk. Cancer Prev Res (Phila) 2008, 1:460-469.
- [17]Kozaki K, Imoto I, Mogi S, Omura K, Inazawa J: Exploration of tumor-suppressive microRNAs silenced by DNA hypermethylation in oral cancer. Cancer Res 2008, 68:2094-2105.
- [18]Chen D, Cabay RJ, Jin Y, Wang A, Luo Y, Shah-Khan M, Zhou X: MicroRNA deregulations in head and neck squamous cell carcinomas. J Oral Maxillofac Res 2013, 4:e2.
- [19]Hu Z, Chen J, Tian T, Zhou X, Gu H, Xu L, Zeng Y, Miao R, Jin G, Ma H, Chen Y, Shen H: Genetic variants of miRNA sequences and non-small cell lung cancer survival. J Clin Invest 2008, 118:2600-2608.
- [20]Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira MA, Bender D, Maller J, Sklar P, de Bakker PI, Daly MJ, Sham PC: PLINK: a tool set for whole-genome association and population-based linkage analyses. Am J Hum Genet 2007, 81:559-575.
- [21]Benjamini Y, Drai D, Elmer G, Kafkafi N, Golani I: Controlling the false discovery rate in behavior genetics research. Behav Brain Res 2001, 125:279-284.
- [22]Ritchie MD, Hahn LW, Roodi N, Bailey LR, Dupont WD, Parl FF, Moore JH: Multifactor-dimensionality reduction reveals high-order interactions among estrogen-metabolism genes in sporadic breast cancer. Am J Hum Genet 2001, 69:138-147.
- [23]Hahn LW, Ritchie MD, Moore JH: Multifactor dimensionality reduction software for detecting gene-gene and gene-environment interactions. Bioinformatics 2003, 19:376-382.
- [24]Epistasis Blog [http://compgen.blogspot.in/2006/12/mdr-101-part-4-results.html webcite]
- [25]Abecasis GR, Auton A, Brooks LD, DePristo MA, Durbin RM, Handsaker RE, Kang HM, Marth GT, McVean GA: An integrated map of genetic variation from 1,092 human genomes. Nature 2012, 491:56-65.
- [26]Wang WC, Lin FM, Chang WC, Lin KY, Huang HD, Lin NS: miRExpress: analyzing high-throughput sequencing data for profiling microRNA expression. BMC Bioinforma 2009, 10:328. BioMed Central Full Text
- [27]Motameny S, Wolters S, Nürnberg P, Schumacher B: Next generation sequencing of miRNAs – strategies, resources and methods. Genes 2010, 1:70-84.
- [28]Anders S, Huber W: Differential expression analysis for sequence count data. Genome Biol 2010, 11:R106. BioMed Central Full Text
- [29]Yang TP, Beazley C, Montgomery SB, Dimas AS, Gutierrez-Arcelus M, Stranger BE, Deloukas P, Dermitzakis ET: Genevar: a database and Java application for the analysis and visualization of SNP-gene associations in eQTL studies. Bioinformatics 2010, 26:2474-2476.
- [30]Horikawa Y, Wood CG, Yang H, Zhao H, Ye Y, Gu J, Lin J, Habuchi T, Wu X: Single nucleotide polymorphisms of microRNA machinery genes modify the risk of renal cell carcinoma. Clin Cancer Res 2008, 14:7956-7962.
- [31]Yang H, Dinney CP, Ye Y, Zhu Y, Grossman HB, Wu X: Evaluation of genetic variants in microRNA-related genes and risk of bladder cancer. Cancer Res 2008, 68:2530-2537.
- [32]Bensen JT, Tse CK, Nyante SJ, Barnholtz-Sloan JS, Cole SR, Millikan RC: Association of germline microRNA SNPs in pre-miRNA flanking region and breast cancer risk and survival: the Carolina Breast Cancer Study. Cancer Causes Control 2013, 24:1099-1109.
- [33]Li L, Wu J, Sima X, Bai P, Deng W, Deng X, Zhang L, Gao L: Interactions of miR-34b/c and TP-53 polymorphisms on the risk of nasopharyngeal carcinoma. Tumor Biol 2013, 34:1919-1923.
- [34]Xu Y, Liu L, Liu J, Zhang Y, Zhu J, Chen J, Liu S, Liu Z, Shi H, Shen H, Hu Z: A potentially functional polymorphism in the promoter region of miR-34b/c is associated with an increased risk for primary hepatocellular carcinoma. Int J Cancer 2011, 128:412-417.
- [35]Edwards TL, Lewis K, Velez DR, Dudek S, Ritchie MD: Exploring the performance of Multifactor Dimensionality Reduction in large scale SNP studies and in the presence of genetic heterogeneity among epistatic disease models. Hum Hered 2009, 67:183-192.
- [36]Maclellan SA, Lawson J, Baik J, Guillaud M, Poh CF, Garnis C: Differential expression of miRNAs in the serum of patients with high-risk oral lesions. Cancer Med 2012, 1:268-274.
- [37]Lin J, Huang S, Wu S, Ding J, Zhao Y, Liang L, Tian Q, Zha R, Zhan R, He X: MicroRNA-423 promotes cell growth and regulates G(1)/S transition by targeting p21Cip1/Waf1 in hepatocellular carcinoma. Carcinogenesis 2011, 32:1641-1647.
- [38]Wong TS, Liu XB, Wong BY, Ng RW, Yuen AP, Wei WI: Mature miR-184 as potential oncogenic microRNA of squamous cell carcinoma of tongue. Clin Cancer Res 2008, 14:2588-2592.
- [39]Siemens H, Jackstadt R, Hunten S, Kaller M, Menssen A, Gotz U, Hermeking H: miR-34 and SNAIL form a double-negative feedback loop to regulate epithelial-mesenchymal transitions. Cell Cycle 2011, 10:4256-4271.
- [40]Slaby O, Bienertova-Vasku J, Svoboda M, Vyzula R: Genetic polymorphisms and microRNAs: new direction in molecular epidemiology of solid cancer. J Cell Mol Med 2012, 16:8-21.