期刊论文详细信息
EvoDevo
What is a segment?
Nipam H Patel2  Roberta L Hannibal1 
[1] Present Address: Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA;Departments of Molecular and Cell Biology and Integrative Biology, University of California, 519A LSA #3200, Berkeley, CA 94720-3200, USA
关键词: Segmentation;    Pseudosegment;    Metamere;    Evolution;   
Others  :  804147
DOI  :  10.1186/2041-9139-4-35
 received in 2013-07-15, accepted in 2013-11-19,  发布年份 2013
PDF
【 摘 要 】

Animals have been described as segmented for more than 2,000 years, yet a precise definition of segmentation remains elusive. Here we give the history of the definition of segmentation, followed by a discussion on current controversies in defining a segment. While there is a general consensus that segmentation involves the repetition of units along the anterior-posterior (a-p) axis, long-running debates exist over whether a segment can be composed of only one tissue layer, whether the most anterior region of the arthropod head is considered segmented, and whether and how the vertebrate head is segmented. Additionally, we discuss whether a segment can be composed of a single cell in a column of cells, or a single row of cells within a grid of cells. We suggest that ‘segmentation’ be used in its more general sense, the repetition of units with a-p polarity along the a-p axis, to prevent artificial classification of animals. We further suggest that this general definition be combined with an exact description of what is being studied, as well as a clearly stated hypothesis concerning the specific nature of the potential homology of structures. These suggestions should facilitate dialogue among scientists who study vastly differing segmental structures.

【 授权许可】

   
2013 Hannibal and Patel; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20140708054145294.pdf 504KB PDF download
Figure 4. 73KB Image download
Figure 3. 102KB Image download
Figure 2. 91KB Image download
Figure 1. 99KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

【 参考文献 】
  • [1]Goodrich ES: On the relation of the arthropod head to the annelid prostomium. Q J Microsc Sci 1897, 40:247-268.
  • [2]Clark RB: Dynamics in Metazoan Evolution: The Origin of the Coelom and Segments. Oxford: Clarendon Press; 1964.
  • [3]Clark RB: The evolution of the celom and metameric segmentation. In The Lower Metazoa: Comparative Biology and Phylogeny. Edited by Dougherty EC. Berkeley: University of California Press; 1963:91-107.
  • [4]Tautz D: Segmentation. Dev Cell 2004, 7:301-312.
  • [5]Aguinaldo AMA, Turbeville JM, Linford LS, Rivera MC, Garey JR, Raff RA, Lake JA: Evidence for a clade of nematodes, arthropods and other moulting animals. Nature 1997, 387:489-493.
  • [6]Chipman AD: Parallel evolution of segmentation by co-option of ancestral gene regulatory networks. Bioessays 2010, 32:60-70.
  • [7]Couso JP: Segmentation, metamerism and the Cambrian explosion. Int J Dev Biol 2009, 53:1305-1316.
  • [8]Davis GK, Patel NH: The origin and evolution of segmentation. Trends Genet 1999, 15:M68-M72.
  • [9]Peel A, Akam M: Evolution of segmentation: rolling back the clock. Curr Biol 2003, 13:R708-R710.
  • [10]Richmond DL, Oates AC: The segmentation clock: inherited trait or universal design principle? Curr Opin Genet Dev 2012, 22:600-606.
  • [11]Seaver EC: Segmentation: mono-or polyphyletic? Int J Dev Biol 2003, 47:583-596.
  • [12]Minelli A, Fusco G: Evo-devo perspectives on segmentation: model organisms, and beyond. Trends Ecol Evol 2004, 19:423-429.
  • [13]Willmer P: Invertebrate Relationships: Patterns in Animal Evolution. Cambridge: Cambridge University Press; 1990.
  • [14]Paps J, Baguñà J, Riutort M: Bilaterian phylogeny: a broad sampling of 13 nuclear genes provides a new Lophotrochozoa phylogeny and supports a paraphyletic basal Acoelomorpha. Mol Biol Evol 2009, 26:2397-2406.
  • [15]Aristotle: The History of Animals. Book IV. [http://classics.mit.edu/Aristotle/history_anim.4.iv.html webcite]
  • [16]Cuvier G, Latreille P: Le règne animal distribué d’après son organisation, pour servir de base a l’histoire naturelle des animaux et d’introduction a l’anatomie comparée. Paris: Chez Déterville; 1817.
  • [17]Davis GK, Patel NH: Short, long, and beyond: molecular and embryological approaches to insect segmentation. Annu Rev Entomol 2002, 47:669-699.
  • [18]Dequéant M-L, Pourquié O: Segmental patterning of the vertebrate embryonic axis. Nat Rev Genet 2008, 9:370-382.
  • [19]Scholtz G: The Articulata hypothesis - or what is a segment? Org Divers Evol 2002, 2:197-215.
  • [20]Bateson W: Materials for the Study of Variation Treated With Especial Regard to Discontinuity in the Origin of Species. London: Macmillan; 1894.
  • [21]Giangrande A, Gambi MC: Metamerism and life-style within polychaetes: morpho-functional aspects and evolutionary implications. Ital J Zool 1998, 65:39-50.
  • [22]DuPorte EM: The comparative morphology of the insect head. Annu Rev Entomol 1957, 2:55-70.
  • [23]Azpiazu N, Lawrence PA, Vincent J-P, Frasch M: Segmentation and specification of the Drosophila mesoderm. Genes Dev 1996, 10:3183-3194.
  • [24]Bock E: Wechselbeziehungen zwischen den Keimblättern bei der Organbildung von Chrysopa perla (L.). Rouxs Arch Dev Biol 1942, 141:159-247.
  • [25]Frasch M: Intersecting signalling and transcriptional pathways in Drosophila heart specification. Semin Cell Dev Biol 1999, 10(1):61-71.
  • [26]Haget A: Analyse expérimentale des facteurs de la morphogenèse embryonnaire chez le coléoptère Leptinotarsa. Bullettin Biologique de la France et de la Belgique 1953, 87:123-217.
  • [27]Hannibal RL, Price AL, Patel NH: The functional relationship between ectodermal and mesodermal segmentation in the crustacean, Parhyale hawaiensis. Dev Biol 2012, 361:427-438.
  • [28]Peel AD, Chipman AD, Akam M: Arthropod segmentation: beyond the Drosophila paradigm. Nat Rev Genet 2005, 6:905-916.
  • [29]Krol AJ, Roellig D, Dequéant M-L, Tassy O, Glynn E, Hattem G, Mushegian A, Oates AC, Pourquié O: Evolutionary plasticity of segmentation clock networks. Development 2011, 138:2783-2792.
  • [30]Chesebro JE, Pueyo JI, Couso JP: Interplay between a Wnt-dependent organiser and the Notch segmentation clock regulates posterior development in Periplaneta americana. Biol Open 2013, 2:227-237.
  • [31]Damen WGM: Evolutionary conservation and divergence of the segmentation process in arthropods. Dev Dyn 2007, 236:1379-1391.
  • [32]El-Sherif E, Averof M, Brown SJ: A segmentation clock operating in blastoderm and germband stages of Tribolium development. Development 2012, 139:4341-4346.
  • [33]Sarrazin AF, Peel AD, Averof M: A segmentation clock with two-segment periodicity in insects. Science 2012, 336:338-341.
  • [34]Holley SA: The genetics and embryology of zebrafish metamerism. Dev Dyn 2007, 236:1422-1449.
  • [35]Jiang D, Munro EM, Smith WC: Ascidian prickle regulates both mediolateral and anterior-posterior cell polarity of notochord cells. Curr Biol 2005, 15:79-85.
  • [36]Browne WE, Price AL, Gerberding M, Patel NH: Stages of embryonic development in the amphipod crustacean, Parhyale hawaiensis. Genesis 2005, 42:124-149.
  • [37]Price AL, Patel NH: Investigating divergent mechanisms of mesoderm development in arthropods: the expression of Ph-twist and Ph-mef2 in Parhyale hawaiensis. J Exp Zool Part B 2008, 310:24-40.
  • [38]Scholtz G, Dohle W: Cell lineage and cell fate in crustacean embryos - a comparative approach. Int J Dev Biol 1996, 40:211-220.
  • [39]Lawrence P: The cellular basis of segmentation in insects. Cell 1981, 26:3-10.
  • [40]Vargas-Vila MA, Hannibal RL, Parchem RJ, Liu PZ, Patel NH: A prominent requirement for single-minded and the ventral midline in patterning the dorsoventral axis of the crustacean Parhyale hawaiensis. Development 2010, 137:3469-3476.
  • [41]Weisblat D, Shankland M: Cell lineage and segmentation in the leech. Philos Trans R Soc B Biol Sci 1985, 312:39-56.
  • [42]Bissen ST, Weisblat DA: Early differences between alternate n blast cells in leech embryo. J Neurobiol 1987, 18:251-269.
  • [43]Zhang SO, Kuo D-H, Weisblat DA: Grandparental stem cells in leech segmentation: differences in CDC42 expression are correlated with an alternating pattern of blast cell fates. Dev Biol 2009, 336:112-121.
  • [44]Keynes RJ, Stern CD: Segmentation in the vertebrate nervous system. Nature 1984, 310:786-789.
  • [45]Budd GE: Why are arthropods segmented? Evol Dev 2001, 3:332-342.
  • [46]Hessling R, Westheide W: Are Echiura derived from a segmented ancestor? Immunohistochemical analysis of the nervous system in developmental stages of Bonellia viridis. J Morphol 2002, 252:100-113.
  • [47]Struck T, Schult N, Kusen T, Hickman E, Bleidorn C, Mchugh D, Halanych K: Annelid phylogeny and the status of Sipuncula and Echiura. BMC Evol Biol 2007, 7:57. BioMed Central Full Text
  • [48]Struck TH, Paul C, Hill N, Hartmann S, Hösel C, Kube M, Lieb B, Meyer A, Tiedemann R, Purschke G: Phylogenomic analyses unravel annelid evolution. Nature 2011, 471:95-98.
  • [49]Smith SA, Wilson NG, Goetz FE, Feehery C, Andrade SCS, Rouse GW, Giribet G, Dunn CW: Resolving the evolutionary relationships of molluscs with phylogenomic tools. Nature 2011, 480:364-367.
  • [50]Wilson NG, Rouse GW, Giribet G: Assessing the molluscan hypothesis Serialia (Monoplacophora + Polyplacophora) using novel molecular data. Mol Phylogenet Evol 2010, 54:187-193.
  • [51]Taylor JD: Origin and Evolutionary Radiation of the Mollusca. Oxford: Oxford University Press; 1996.
  • [52]Scholtz G, Edgecombe GD: The evolution of arthropod heads: reconciling morphological, developmental and palaeontological evidence. Dev Genes Evol 2006, 216:395-415.
  • [53]Budd GE, Telford MJ: The origin and evolution of arthropods. Nature 2009, 457:812-817.
  • [54]Stephenson J: The Oligochaeta. Oxford: Clarendon Press; 1930.
  • [55]Schmidt-Ott U, González-Gaitán M, Technau GM: Analysis of neural elements in head-mutant Drosophila embryos suggests segmental origin of the optic lobes. Rouxs Arch Dev Biol 1995, 205:31-44.
  • [56]Janssen R: Segment polarity gene expression in a myriapod reveals conserved and diverged aspects of early head patterning in arthropods. Dev Genes Evol 2012, 222:299-309.
  • [57]Liubicich DM, Serano JM, Pavlopoulos A, Kontarakis Z, Protas ME, Kwan E, Chatterjee S, Tran KD, Averof M, Patel NH: Knockdown of Parhyale Ultrabithorax recapitulates evolutionary changes in crustacean appendage morphology. Proc Natl Acad Sci 2009, 106:13892-13896.
  • [58]Prpic N-M, Wigand B, Damen WG, Klingler M: Expression of dachshund in wild-type and Distal-less mutant Tribolium corroborates serial homologies in insect appendages. Dev Genes Evol 2001, 211:467-477.
  • [59]Prpic N-M, Tautz D: The expression of the proximodistal axis patterning genes Distal-less and dachshund in the appendages of Glomeris marginata (Myriapoda: Diplopoda) suggests a special role of these genes in patterning the head appendages. Dev Biol 2003, 260:97.
  • [60]Rogers BT, Kaufman TC: Structure of the insect head as revealed by the EN protein pattern in developing embryos. Development 1996, 122:3419-3432.
  • [61]Schmidt-Ott U, Technau GM: Expression of en and wg in the embryonic head and brain of Drosophila indicates a refolded band of seven segment remnants. Development 1992, 116:111-125.
  • [62]Golden JA, Cepko CL: Clones in the chick diencephalon contain multiple cell types and siblings are widely dispersed. Development 1996, 122:65-78.
  • [63]Horder T, Presley R, Slípka J: The head problem. The organizational significance of segmentation in head development. Acta Universitatis Carolinae 2010, 158:1-165.
  • [64]Jeffs P, Keynes R: A brief history of segmentation. Sem Dev Biol 1990, 1:77-87.
  • [65]Kimmel CB: Patterning the brain of the zebrafish embryo. Annu Rev Neurosci 1993, 16:707-732.
  • [66]Kuratani S: Evolutionary developmental biology and vertebrate head segmentation: a perspective from developmental constraint. Theor Biosci 2003, 122:230-251.
  • [67]Kuratani S, Schilling T: Head segmentation in vertebrates. Integr Comp Biol 2008, 48:604-610.
  • [68]Lumsden A, Krumlauf R: Patterning the vertebrate neuraxis. Science 1996, 274:1109-1115.
  • [69]Noden DM, Schneider RA: Neural crest cells and the community of plan for craniofacial development: historical debates and current perspectives. In Neural Crest Induction and Differentiation. Edited by Saint-Jeannet J-P. New York: Landes Bioscience and Springer Science + Business Media, LLC; 2006:1-23.
  • [70]Rubenstein J, Martinez S, Shimamura K, Puelles L: The embryonic vertebrate forebrain: the prosomeric model. Science 1994, 266:578-580.
  • [71]Puelles L, Rubenstein JLR: Forebrain gene expression domains and the evolving prosomeric model. Trends Neurosci 2003, 26:469-476.
  • [72]Gehring WJ, Kloter U, Suga H: Evolution of the Hox gene complex from an evolutionary ground state. Curr Top Dev Biol 2009, 88:35-61.
  • [73]Mallo M, Wellik DM, Deschamps J: Hox genes and regional patterning of the vertebrate body plan. Dev Biol 2010, 344:7.
  • [74]Hejnol A, Martindale M: Coordinated spatial and temporal expression of Hox genes during embryogenesis in the acoel Convolutriloba longifissura. BMC Biology 2009, 7:65. BioMed Central Full Text
  • [75]Ryan JF, Mazza ME, Pang K, Matus DQ, Baxevanis AD, Martindale MQ, Finnerty JR: Pre-bilaterian origins of the Hox cluster and the Hox code: evidence from the sea anemone, Nematostella vectensis. PLoS One 2007, 2:e153.
  • [76]Alexander T, Nolte C, Krumlauf R: Hox genes and segmentation of the hindbrain and axial skeleton. Annu Rev Cell Dev 2009, 25:431-456.
  • [77]Mellitzer G, Xu Q, Wilkinson DG: Control of cell behaviour by signalling through Eph receptors and ephrins. Curr Opin Neurobiol 2000, 10:400-408.
  • [78]Graham A: Deconstructing the pharyngeal metamere. J Exp Zool Part B 2008, 310:336-344.
  • [79]Miller CT, Maves L, Kimmel CB: moz regulates Hox expression and pharyngeal segmental identity in zebrafish. Development 2004, 131:2443-2461.
  文献评价指标  
  下载次数:22次 浏览次数:11次