期刊论文详细信息
Journal of Translational Medicine
Profiling of cell stress protein expression in cardiac tissue of cardiosurgical patients undergoing remote ischemic preconditioning: implications for thioredoxin in cardioprotection
Martin Albrecht1  Markus Steinfath1  Jens Scholz1  Kai D Zacharowski2  Jochen Cremer3  Matthias Gruenewald1  Patrick Meybohm2  Karina Zitta1 
[1] Department of Anaesthesiology and Intensive Care Medicine, University Hospital Schleswig-Holstein, Schwanenweg 21, Kiel, 24105, Germany;Department of Anaesthesiology, Intensive Care Medicine and Pain Therapy, University Hospital Frankfurt, Frankfurt am Main, Germany;Department of Cardiovascular Surgery, University Hospital Schleswig-Holstein, Kiel, Germany
关键词: Thioredoxin;    Protein expression;    Cardiac surgery;    Cardioprotection;    Remote ischemic preconditioning;   
Others  :  1137695
DOI  :  10.1186/s12967-015-0403-6
 received in 2014-11-04, accepted in 2015-01-16,  发布年份 2015
PDF
【 摘 要 】

Background

Transient episodes of ischemia in a remote organ (remote ischemic preconditioning, RIPC) can attenuate myocardial ischemia/reperfusion injury but the underlying mechanisms of RIPC in the target organ are still poorly understood. Recent animal studies suggested that the small redox protein thioredoxin may be a potential candidate for preconditioning-induced organprotection. Here we employed a human proteome profiler array to investigate the RIPC regulated expression of cell stress proteins and particularly of thioredoxin in heart tissue of cardiosurgical patients with cardiopulmonary bypass (CPB).

Methods

RIPC was induced by four 5 minute cycles of transient upper limb ischemia/reperfusion using a blood pressure cuff. Right atrial tissue was obtained from patients receiving RIPC (N = 19) and control patients (N = 19) before and after CPB. Cell stress proteome profiler arrays as well as Westernblotting and ELISA experiments for thioredoxin (Thio-1) were performed employing the respective tissue samples.

Results

Protein arrays revealed an up-regulation of 26.9% (7/26; CA IX, Cyt C, HSP-60, HSP-70, pJNK, SOD2, Thio-1) of cell stress associated proteins in RIPC tissue obtained before CPB, while 3.8% (1/26; SIRT2) of the proteins were down-regulated. Array results for thioredoxin were verified by semi-quantitative Westernblotting studies which showed a significant up-regulation of thioredoxin protein levels in cardiac tissue samples of RIPC patients taken before CPB (RIPC: 5.36 ± 0.85 a.u.; control: 3.23 ± 0.39 a.u.; P < 0.05). Quantification of thioredoxin levels in tissue of RIPC and control patients by ELISA experiments further confirmed the Westernblotting results (RIPC: 0.30 ± 0.02 ng/mg protein; control: 0.24 ± 0.02 ng/mg protein; P < 0.05).

Conclusion

We provide evidence for thioredoxin as a RIPC-induced factor in heart tissue of cardiosurgical patients and identified several cell stress associated proteins that are regulated by RIPC and may play a role in RIPC-mediated cardioprotection.

【 授权许可】

   
2015 Zitta et al.; licensee BioMed Central.

【 预 览 】
附件列表
Files Size Format View
20150317140058577.pdf 1564KB PDF download
Figure 5. 20KB Image download
Figure 4. 44KB Image download
Figure 3. 155KB Image download
Figure 2. 17KB Image download
Figure 1. 29KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

【 参考文献 】
  • [1]Gottesman RF, McKhann GM, Hogue CW: Neurological complications of cardiac surgery. Semin Neurol 2008, 28:703-715.
  • [2]Newman MF, Wolman R, Kanchuger M, Marschall K, Mora-Mangano C, Roach G, et al.: Multicenter preoperative stroke risk index for patients undergoing coronary artery bypass graft surgery. Multicenter Study of Perioperative Ischemia (McSPI) Research Group. Circulation 1996, 94:II74-II80.
  • [3]Anselmi A, Abbate A, Girola F, Nasso G, Biondi-Zoccai GG, Possati G, et al.: Myocardial ischemia, stunning, inflammation, and apoptosis during cardiac surgery: a review of evidence. Eur J Cardiothorac Surg 2004, 25:304-311.
  • [4]Murry CE, Jennings RB, Reimer KA: Preconditioning with ischemia: a delay of lethal cell injury in ischemic myocardium. Circulation 1986, 74:1124-1136.
  • [5]Gross ER, Gross GJ: Ischemic preconditioning and myocardial infarction: an update and perspective. Drug Discov Today Dis Mech 2007, 4:165-174.
  • [6]Hausenloy DJ, Boston-Griffiths E, Yellon DM: Cardioprotection during cardiac surgery. Cardiovasc Res 2012, 94:253-265.
  • [7]Heusch G, Boengler K, Schulz R: Cardioprotection: nitric oxide, protein kinases, and mitochondria. Circulation 2008, 118:1915-1919.
  • [8]Przyklenk K: Reduction of myocardial infarct size with ischemic “conditioning”: physiologic and technical considerations. Anesth Analg 2013, 117:891-901.
  • [9]Przyklenk K, Whittaker P: Remote ischemic preconditioning: current knowledge, unresolved questions, and future priorities. J Cardiovasc Pharmacol Ther 2011, 16:255-259.
  • [10]Ali ZA, Callaghan CJ, Lim E, Ali AA, Nouraei SA, Akthar AM, et al.: Remote ischemic preconditioning reduces myocardial and renal injury after elective abdominal aortic aneurysm repair: a randomized controlled trial. Circulation 2007, 116:I98-I105.
  • [11]Cheung MM, Kharbanda RK, Konstantinov IE, Shimizu M, Frndova H, Li J, et al.: Randomized controlled trial of the effects of remote ischemic preconditioning on children undergoing cardiac surgery: first clinical application in humans. J Am Coll Cardiol 2006, 47:2277-2282.
  • [12]Gunaydin B, Cakici I, Soncul H, Kalaycioglu S, Cevik C, Sancak B, et al.: Does remote organ ischaemia trigger cardiac preconditioning during coronary artery surgery? Pharmacol Res 2000, 41:493-496.
  • [13]Hausenloy DJ, Mwamure PK, Venugopal V, Harris J, Barnard M, Grundy E, et al.: Effect of remote ischaemic preconditioning on myocardial injury in patients undergoing coronary artery bypass graft surgery: a randomised controlled trial. Lancet 2007, 370:575-579.
  • [14]Hoole SP, Heck PM, Sharples L, Khan SN, Duehmke R, Densem CG, et al.: Cardiac Remote Ischemic Preconditioning in coronary stenting (CRISP Stent) study: a prospective, randomized control trial. Circulation 2009, 119:820-827.
  • [15]Kharbanda RK, Li J, Konstantinov IE, Cheung MM, White PA, Frndova H, et al.: Remote ischaemic preconditioning protects against cardiopulmonary bypass-induced tissue injury: a preclinical study. Heart 2006, 92:1506-1511.
  • [16]Thielmann M, Kottenberg E, Kleinbongard P, Wendt D, Gedik N, Pasa S, et al.: Cardioprotective and prognostic effects of remote ischaemic preconditioning in patients undergoing coronary artery bypass surgery: a single-centre randomised, double-blind, controlled trial. Lancet 2013, 382:597-604.
  • [17]Hausenloy DJ, Yellon DM: Preconditioning and postconditioning: underlying mechanisms and clinical application. Atherosclerosis 2009, 204:334-341.
  • [18]Heidbreder M, Naumann A, Tempel K, Dominiak P, Dendorfer A: Remote vs. ischaemic preconditioning: the differential role of mitogen-activated protein kinase pathways. Cardiovasc Res 2008, 78:108-115.
  • [19]Wolfrum S, Schneider K, Heidbreder M, Nienstedt J, Dominiak P, Dendorfer A: Remote preconditioning protects the heart by activating myocardial PKCepsilon-isoform. Cardiovasc Res 2002, 55:583-589.
  • [20]Sadat U: Signaling pathways of cardioprotective ischemic preconditioning. Int J Surg 2009, 7:490-498.
  • [21]Hausenloy DJ, Iliodromitis EK, Andreadou I, Papalois A, Gritsopoulos G, Anastasiou-Nana M, et al.: Investigating the signal transduction pathways underlying remote ischemic conditioning in the porcine heart. Cardiovasc Drugs Ther 2012, 26:87-93.
  • [22]Sicard P, Clark JE, Jacquet S, Mohammadi S, Arthur JS, O’Keefe SJ, et al.: The activation of p38 alpha, and not p38 beta, mitogen-activated protein kinase is required for ischemic preconditioning. J Mol Cell Cardiol 2010, 48:1324-1328.
  • [23]Heusch G, Musiolik J, Kottenberg E, Peters J, Jakob H, Thielmann M: STAT5 activation and cardioprotection by remote ischemic preconditioning in humans: short communication. Circ Res 2012, 110:111-115.
  • [24]Michelsen MM, Stottrup NB, Schmidt MR, Lofgren B, Jensen RV, Tropak M, et al.: Exercise-induced cardioprotection is mediated by a bloodborne, transferable factor. Basic Res Cardiol 2012, 107:1-9.
  • [25]Shimizu M, Tropak M, Diaz RJ, Suto F, Surendra H, Kuzmin E, et al.: Transient limb ischaemia remotely preconditions through a humoral mechanism acting directly on the myocardium: evidence suggesting cross-species protection. Clin Sci (Lond) 2009, 117:191-200.
  • [26]Zitta K, Meybohm P, Bein B, Gruenewald M, Lauer F, Steinfath M, et al.: Activities of cardiac tissue matrix metalloproteinases 2 and 9 are reduced by remote ischemic preconditioning in cardiosurgical patients with cardiopulmonary bypass. J Transl Med 2014, 12:94. BioMed Central Full Text
  • [27]Albrecht M, Zitta K, Bein B, Wennemuth G, Broch O, Renner J, et al.: Remote ischemic preconditioning regulates HIF-1 alpha levels, apoptosis and inflammation in heart tissue of cardiosurgical patients: a pilot experimental study. Basic Res Cardiol 2013, 108:314-327.
  • [28]Lee S, Kim SM, Lee RT: Thioredoxin and thioredoxin target proteins: from molecular mechanisms to functional significance. Antioxid Redox Signal 2013, 18:1165-1207.
  • [29]Collet JF, Messens J: Structure, function, and mechanism of thioredoxin proteins. Antioxid Redox Signal 2010, 13:1205-1216.
  • [30]Haendeler J, Tischler V, Hoffmann J, Zeiher AM, Dimmeler S: Low doses of reactive oxygen species protect endothelial cells from apoptosis by increasing thioredoxin-1 expression. FEBS Lett 2004, 577:427-433.
  • [31]Haendeler J, Hoffmann J, Tischler V, Berk BC, Zeiher AM, Dimmeler S: Redox regulatory and anti-apoptotic functions of thioredoxin depend on S-nitrosylation at cysteine 69. Nat Cell Biol 2002, 4:743-749.
  • [32]Chiueh CC, Andoh T, Chock PB: Induction of thioredoxin and mitochondrial survival proteins mediates preconditioning-induced cardioprotection and neuroprotection. Ann N Y Acad Sci 2005, 1042:403-418.
  • [33]Nicholson CK, Lambert JP, Molkentin JD, Sadoshima J, Calvert JW: Thioredoxin 1 is essential for sodium sulfide-mediated cardioprotection in the setting of heart failure. Arterioscler Thromb Vasc Biol 2013, 33:744-751.
  • [34]Yoshioka J, Lee RT: Thioredoxin-interacting protein and myocardial mitochondrial function in ischemia-reperfusion injury. Trends Cardiovasc Med 2014, 24:75-80.
  • [35]Licka M, Zimmermann R, Zehelein J, Dengler TJ, Katus HA, Kubler W: Troponin T concentrations 72 hours after myocardial infarction as a serological estimate of infarct size. Heart 2002, 87:520-524.
  • [36]Mair P, Mair J, Seibt I, Wieser C, Furtwaengler W, Waldenberger F, et al.: Cardiac troponin T: a new marker of myocardial tissue damage in bypass surgery. J Cardiothorac Vasc Anesth 1993, 7:674-678.
  • [37]Das DK: Thioredoxin regulation of ischemic preconditioning. Antioxid Redox Signal 2004, 6:405-412.
  • [38]Turoczi T, Chang VW, Engelman RM, Maulik N, Ho YS, Das DK: Thioredoxin redox signaling in the ischemic heart: an insight with transgenic mice overexpressing Trx1. J Mol Cell Cardiol 2003, 35:695-704.
  • [39]Heusch G: Cardioprotection: chances and challenges of its translation to the clinic. Lancet 2013, 381:166-175.
  • [40]Lim SY, Hausenloy DJ: Remote ischemic conditioning: from bench to bedside. Front Physiol 2012, 3:27.
  • [41]Hausenloy DJ, Yellon DM: The therapeutic potential of ischemic conditioning: an update. Nat Rev Cardiol 2011, 8:619-629.
  • [42]Meybohm P, Zacharowski K, Cremer J, Roesner J, Kletzin F, Schaelte G, et al.: Remote ischaemic preconditioning for heart surgery. the study design for a multi-center randomized double-blinded controlled clinical trial–the RIPHeart-Study. Eur Heart J 2012, 33:1423-1426.
  • [43]Meybohm P, Renner J, Broch O, Caliebe D, Albrecht M, Cremer J, et al. Postoperative neurocognitive dysfunction in patients undergoing cardiac surgery after remote ischemic preconditioning: a double-blind randomized controlled pilot study. PLoS One. 2013;8:e64743–3.
  • [44]Chaudhry AZ, Diodato MD, Massad MG: Heat shock protein expression during cardiac surgery. World J Surg 2010, 34:682-683.
  • [45]Yellon DM, Latchman DS, Marber MS: Stress proteins–an endogenous route to myocardial protection: fact or fiction? Cardiovasc Res 1993, 27:158-161.
  • [46]Stress proteins and myocardial protection. Lancet. 1991;337:271-2.
  • [47]Morris SD, Yellon DM, Marber MS: Stress proteins: a future role in cardioprotection? Heart 1996, 76:97-98.
  • [48]Wei H, Campbell W, Vander Heide RS: Heat shock-induced cardioprotection activates cytoskeletal-based cell survival pathways. Am J Physiol Heart Circ Physiol 2006, 291:H638-H647.
  • [49]Peng W, Zhang Y, Zheng M, Cheng H, Zhu W, Cao CM, et al.: Cardioprotection by CaMKII-deltaB is mediated by phosphorylation of heat shock factor 1 and subsequent expression of inducible heat shock protein 70. Circ Res 2010, 106:102-110.
  • [50]Tullio F, Angotti C, Perrelli MG, Penna C, Pagliaro P: Redox balance and cardioprotection. Basic Res Cardiol 2013, 108:392.
  • [51]Penna C, Perrelli MG, Pagliaro P: Mitochondrial pathways, permeability transition pore, and redox signaling in cardioprotection: therapeutic implications. Antioxid Redox Signal 2013, 18:556-599.
  • [52]Baehner T, Boehm O, Probst C, Poetzsch B, Hoeft A, Baumgarten G, et al.: Cardiopulmonary bypass in cardiac surgery. Anaesthesist 2012, 61:846-856.
  • [53]Jaffer U, Wade RG, Gourlay T: Cytokines in the systemic inflammatory response syndrome: a review. HSR Proc Intensive Care Cardiovasc Anesth 2010, 2:161-175.
  • [54]Huffmyer J, Raphael J: Physiology and pharmacology of myocardial preconditioning and postconditioning. Semin Cardiothorac Vasc Anesth 2009, 13:5-18.
  • [55]Bousselmi R, Lebbi MA, Ferjani M: Myocardial ischemic conditioning: physiological aspects and clinical applications in cardiac surgery. J Saudi Heart Assoc 2014, 26:93-100.
  • [56]McCafferty K, Forbes S, Thiemermann C, Yaqoob MM: The challenge of translating ischemic conditioning from animal models to humans: the role of comorbidities. Dis Model Mech 2014, 7:1321-1333.
  文献评价指标  
  下载次数:19次 浏览次数:3次