期刊论文详细信息
Diabetology & Metabolic Syndrome
Neuroendocrine and metabolic components of dopamine agonist amelioration of metabolic syndrome in SHR rats
Anthony H Cincotta1  Yelena Trubitsyna1  Shuqin Luo1  Michael Ezrokhi1 
[1] VeroScience LLC, Tiverton, RI 02878, USA
关键词: Resetting;    Insulin resistance;    Diabetes;    Bromocriptine;    Neuroendocrine;   
Others  :  1114971
DOI  :  10.1186/1758-5996-6-104
 received in 2014-05-28, accepted in 2014-09-16,  发布年份 2014
PDF
【 摘 要 】

Background

The hypertensive, pro-inflammatory, obese state is strongly coupled to peripheral and hepatic insulin resistance (in composite termed metabolic syndrome [MS]). Hepatic pro-inflammatory pathways have been demonstrated to initiate or exacerbate hepatic insulin resistance and contribute to fatty liver, a correlate of MS. Previous studies in seasonally obese animals have implicated an important role for circadian phase-dependent increases in hypothalamic dopaminergic tone in the maintenance of the lean, insulin sensitive condition. However, mechanisms driving this dopaminergic effect have not been fully delineated and the impact of such dopaminergic function upon the above mentioned parameters of MS, particularly upon key intra-hepatic regulators of liver inflammation and lipid and glucose metabolism have never been investigated.

Objective

This study therefore investigated the effects of timed daily administration of bromocriptine, a potent dopamine D2 receptor agonist, on a) ventromedial hypothalamic catecholamine activity, b) MS and c) hepatic protein levels of key regulators of liver inflammation and glucose and lipid metabolism in a non-seasonal model of MS - the hypertensive, obese SHR rat.

Methods

Sixteen week old SHR rats maintained on 14 hour daily photoperiods were treated daily for 16 days with bromocriptine (10 mg/kg, i.p.) or vehicle at 1 hour before light offset and, subsequent to blood pressure recordings on day 14, were then utilized for in vivo microdialysis of ventromedial hypothalamic catecholamine activity or sacrificed for the analyses of MS factors and regulators of hepatic metabolism. Normal Wistar rats served as wild-type controls for hypothalamic activity, body fat levels, and insulin sensitivity.

Results

Bromocriptine treatment significantly reduced ventromedial hypothalamic norepinephrine and serotonin levels to the normal range and systolic and diastolic blood pressures, retroperitoneal body fat level, plasma insulin and glucose levels and HOMA-IR relative to vehicle treated SHR controls. Such treatment also reduced plasma levels of C-reactive protein, leptin, and norepinephrine and increased that of plasma adiponectin significantly relative to SHR controls. Finally, bromocriptine treatment significantly reduced hepatic levels of several pro-inflammatory pathway proteins and of the master transcriptional activators of lipogenesis, gluconeogenesis, and free fatty acid oxidation versus control SHR rats.

Conclusion

These findings indicate that in SHR rats, timed daily dopamine agonist treatment improves hypothalamic and neuroendocrine pathologies associated with MS and such neuroendocrine events are coupled to a transformation of liver metabolism potentiating a reduction of elevated lipogenic and gluconeogenic capacity. This liver effect may be driven in part by concurrent reductions in hyperinsulinemia and sympathetic tone as well as by reductions in intra-hepatic inflammation.

【 授权许可】

   
2014 Ezrokhi et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150205031015569.pdf 2437KB PDF download
Figure 9. 68KB Image download
Figure 8. 70KB Image download
Figure 7. 73KB Image download
Figure 6. 59KB Image download
Figure 5. 52KB Image download
Figure 4. 59KB Image download
Figure 3. 88KB Image download
Figure 2. 56KB Image download
Figure 1. 88KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

Figure 7.

Figure 8.

Figure 9.

【 参考文献 】
  • [1]Cincotta AH: Hypothalamic role in the insulin resistance syndrome. In Insulin Resistance and Insulin Resistance Syndrome, Frontiers in Animal Diabetes Research Series. Edited by Hansen B, Shafrir E. London: Taylor and Francis; 2002:271-312.
  • [2]Meier AH, Cincotta AH: Circadian rhythms regulate the expression of the thrifty genotype/phenotype. Diabetes Rev 1996, 4:464-487. http://www.scopus.com/scopus/inward/record.url?eid=2-s2.0-0030445765&partnerID=K84CvKBR&rel=3.0.0&md5=6330c11e945d55379158dd0e8f9f1438 webcite
  • [3]Luo S, Luo J, Cincotta AH: Suprachiasmatic nuclei monoamine metabolism of glucose tolerance versus intolerant hamsters. Neuroreport 1999, 10:2073-2077.
  • [4]Luo S, Luo J, Meier AH, Cincotta AH: Dopaminergic neurotoxin administration to the area of the suprachiasmatic nuclei induces insulin resistance. Neuroreport 1997, 8:3495-3499.
  • [5]Cincotta AH, MacEachern TA, Meier AH: Bromocriptine redirects metabolism and prevents seasonal onset of the obese hyperinsulinemic state in Syrian hamsters. Am J Physiol 1993, 264:E285-E293.
  • [6]Cincotta AH, Schiller BC, Meier AH: Bromocriptine inhibits the seasonally occurring obesity, hyperinsulinemia, insulin resistance and impaired glucose tolerance in the Syrian hamster, Mesocricetus auratus. Metabolism 1991, 40:639-644.
  • [7]Luo S, Ezrokhi M, Trubitsyna Y, Cincotta AH: High Fat Feeding Initiates Insulin Resistance Syndrome Inducing Neuronal Pathways in the Ventromedial Hypothalamus (VMH) [abstract]. Diabetes 2012, 61(Suppl 1):1912P.
  • [8]Cincotta AH, Meier AH: Bromocriptine inhibits in vivo free fatty acid oxidation and hepatic glucose output in seasonally obese hamsters (Mesocricetus auratus). Metabolism 1995, 44:1349-1355.
  • [9]Cincotta AH, Meier AH: Prolactin permits the expression of a circadian variation in lipogenic responsiveness to insulin in hepatocytes of the golden hamster (Mesocricetus auratus). J. Endocr 1985, 106:173-176.
  • [10]Luo S, Liang Y, Cincotta AH: Intracerebroventricular administration of bromocriptine ameliorates the insulin-resistant/glucose intolerant state in hamsters. Neuroendocrinology 1999, 69:160-166.
  • [11]Cincotta AH, Luo S, Zhang Y, Bina G, Jetton TL, Scislowski PWD: Chronic infusion of norepinephrine into the VMH of normal rats induces the obese-glucose intolerant state. Am J Physiol 2000, 278:R435-R444.
  • [12]Luo S, Luo J, Cincotta AH: Chronic ventromedial hypothalamic infusion of norepinephrine and serotonin promotes insulin resistance and glucose intolerance. Neuroendocrinology 1999, 70:460-465.
  • [13]Aleixandre De Artiñano A, Miguel Castro M: Experimental rat models to study the metabolic syndrome. Br J Nutr 2009, 102:1246-1253.
  • [14]Luo S, Meier AH, Cincotta AH: Bromocriptine reduces obesity, glucose intolerance, and extracellular monoamine metabolite levels in the ventromedial hypothalamus of Syrian hamsters. Neuroendocrinology 1998, 68:1-10.
  • [15]Liang Y, Luo S, Cincotta AH: Long-term infusion of norepinephrine plus serotonin into the ventromedial hypothalamus impairs pancreatic islet function. Metabolism 1999, 48:1287-1289.
  • [16]Fujita S, Kazunori A, Lee J, Uchida T, Koshikawa N, Cools AR: Decreased postsynaptic dopaminergic and cholinergic functions in the ventrolateral striatum of spontaneously hypertensive rat. Eur J Pharmacol 2004, 484:75-82.
  • [17]Linthorst ACE, Van Don Busse M, De Jong W, Versteeg DHG: Electrically-stimulated [3H]dopamine and [14C]acetylcholine release from nucleus accumbens slices: difference between spontaneously hypertensive rats and Wistar-Kyoto rats. Brain Res 1990, 509:266-272.
  • [18]Luo S, Zhang Y, Ezrokhi M, Trubitsyna Y, Cincotta AH: High fat feeding abolishes the insulin-sensitizing peak in circadian dopamine activity at the biological clock [abstract]. Diabetes 2014, 63(Suppl 1):1824P.
  • [19]Luo S, Ezrokhi M, Trubitsyna Y, Cincotta AH: Elevation of serotonin activity within the ventromedial hypothalamus (VMH) induces the hypertensive insulin resistant state in rats [abstract]. Diabetes 2011, 60(Suppl 1):A128.
  • [20]Asano T, Watanabe K, Kubota N, Gunji T, Omata M, Kadowaki T, Ohnishi S: Adiponectin knockout mice on high fat diet develop fibrosing steatohepatitis. J Gastroenterol Hepatol 2009, 24:1669-1676.
  • [21]Asterholm IW, Scherer PE: Enhanced metabolic flexibility associated with elevated adiponectin levels. Am J Pathol 2010, 176:1364-1376.
  • [22]Peng Y, Rideout D, Rakita S, Sajan M, Farese R, You M, Murr MM: Downregulation of adiponectin/AdipoR2 is associated with steatohepatitis in obese mice. J Gastrointest Surg 2009, 3:2043-2049.
  • [23]Sowers JR, Resch G, Tempel G, Herzog J, Colantino M: Hyperprolactinaemia in the spontaneously hypertensive rat. Acta Endocrinol (Copenh) 1979, 90:1-7.
  • [24]Berinder K, Nyström T, Höybye C, Hall K, Hulting AL: Insulin sensitivity and lipid profile in prolactinoma patients before and after normalization of prolactin by dopamine agonist therapy. Pituitary 2011, 14:199-207.
  • [25]Tuzcu A, Yalaki S, Arikan S, Gokalp D, Bahcec M, Tuzcu S: Evaluation of insulin sensitivity in hyperprolactinemic subjects by euglycemic hyperinsulinemic clamp technique. Pituitary 2009, 12:330-334.
  • [26]Tuzcu A, Bahceci M, Dursun M, Turgut C, Bahceci S: Insulin sensitivity and hyperprolactinemia. J Endocrinol Invest 2003, 26:341-346.
  • [27]Foss MC, Paula FJ, Paccola GM, Piccinato CE: Peripheral glucose metabolism in human hyperprolactinaemia. Clin Endocrinol (Oxf) 1995, 43:721-726.
  • [28]Serri O, Beauregard H, Rasio E, Hardy J: Decreased sensitivity to insulin in women with microprolactinomas. Fertil Steril 1986, 45:572-574.
  • [29]Dos Santos Silva CM, Barbosa FR, Lima GA, Warszawski L, Fontes R, Domingues RC, Gadelha MR: BMI and metabolic profile in patients with prolactinoma before and after treatment with dopamine agonists. Obesity (Silver Spring) 2011, 19:800-805.
  • [30]Cincotta AH, Wilson JM, DeSouza CJ, Meier AH: Properly timed injections of cortisol and prolactin produce long-term reductions in obesity, hyperinsulinaemia and insulin resistance in the Syrian hamster (Mesocricetus auratus). J Endocrinol 1989, 120:385-391.
  • [31]Cincotta AH, Schiller BC, Landry RJ, Herbert SJ, Miers WR, Meier AH: Circadian neuroendocrine role in age-related changes in body fat stores and insulin sensitivity of the male Sprague-Dawley rat. Chronobiol Int 1993, 10:244-258.
  • [32]Park S, Kang S, Lee HW, Ko BS: Central prolactin modulates insulin sensitivity and insulin secretion in diabetic rats. Neuroendocrinology 2012, 95:332-343.
  • [33]Cincotta AH, Meier AH: Prolactin permits the expression of a circadian variation in lipogenic responsiveness to insulin in hepatocytes of the golden hamster (Mesocricetus auratus). J Endocrinol 1985, 106:173-176.
  • [34]Cincotta AH, Meier AH: Prolactin permits the expression of a circadian variation in insulin receptor profile in hepatocytes of the golden hamster (Mesocricetus auratus). J Endocrinol 1985, 106:177-181.
  • [35]Cincotta AH, Meier AH: Prolactin influences the circadian rhythm of lipogenesis in primary cultured hepatocytes. Horm Metab Res 1989, 21:64-68.
  • [36]Spark RF, Dickstein G: Bromocriptine and endocrine disorders. Ann Intern Med 1979, 90:949-956.
  • [37]Verhelst J, Abs R: Hyperprolactinemia: pathophysiology and management. Treat Endocrinol 2003, 2:23-32.
  • [38]Chen Y, Hong F, Chen H, Fan RF, Zhang XL, Zhang Y, Zhu JX: Distinctive expression and cellular distribution of dopamine receptors in the pancreatic islets of rats. Cell Tissue Res 2014. Epub ahead of print
  • [39]Rubí B, Ljubicic S, Pournourmohammadi S, Carobbio S, Armanet M, Bartley C, Maechler P: Dopamine D2-like receptors are expressed in pancreatic beta cells and mediate inhibition of insulin secretion. J Biol Chem 2005, 280:36824-36832.
  • [40]Simpson N, Maffei A, Freeby M, Burroughs S, Freyberg Z, Javitch J, Leibel RL, Harris PE: Dopamine-mediated autocrine inhibitory circuit regulating human insulin secretion in vitro. Mol Endocrinol 2012, 26:1757-1772.
  • [41]Ustione A, Piston DW, Harris PE: Minireview: Dopaminergic regulation of insulin secretion from the pancreatic islet. Mol Endocrinol 2013, 27:1198-1207.
  • [42]Van Weenen JE DL, Parlevliet ET, Maechler P, Havekes LM, Romijn JA, Ouwens DM, Pijl H, Guigas B: The dopamine receptor D2 agonist bromocriptine inhibits glucose-stimulated insulin secretion by direct activation of the alpha2-adrenergic receptors in beta cells. Biochem Pharmacol 2010, 79:1827-1836.
  • [43]Cincotta AH, Meier AH: Bromocriptine (Ergoset) reduces body weight and improves glucose tolerance in obese subjects. Diabetes Care 1996, 19:667-670.
  • [44]Cincotta AH, Meier AH, Burritt H, Raskin P: Bromocriptine (Ergoset™) improves glycemic control in obese-NIDDM subjects [abstract]. Diabetes 1995, 44(Suppl 1):168A.
  • [45]Bina KG, Cincotta AH: Dopaminergic agonists normalize elevated hypothalamic neuropeptide Y and corticotropin-releasing hormone, body weight gain, and hyperglycemia in ob/ob mice. Neuroendocrinology 2000, 71:68-78.
  • [46]Liang Y, Lubkin M, Sheng H, Scislowski PW, Cincotta AH: Dopamine agonist treatment ameliorates hyperglycemia, hyperlipidemia, and the elevated basal insulin release from islets of ob/ob mice. Biochim Biophys Acta 1998, 1405:1-13.
  • [47]Liang Y, Jetton TL, Lubkin M, Meier AH, Cincotta AH: Bromocriptine/SKF38393 ameliorates islet dysfunction in the diabetic (db/db) mouse. Cell Mol Life Sci 1998, 54:703-711.
  • [48]Pacini G: The hyperbolic equilibrium between insulin sensitivity and secretion. Nutr Metab Cardiovasc Dis 2006, 16(Suppl 1):S22-S27.
  • [49]Sun Z, Lazar MA: Dissociating fatty liver and diabetes. Trends Endocrinol Metab 2013, 24:4-12.
  • [50]Begriche K, Igoudjil A, Pessayre D, Fromenty B: Mitochondrial dysfunction in NASH: causes, consequences and possible means to prevent it. Mitochondrion 2006, 6:1-28.
  • [51]Begriche K, Massart J, Robin MA, Bonnet F, Fromenty B: Mitochondrial adaptations and dysfunctions in nonalcoholic fatty liver disease. Hepatology 2013, 58:1497-1507.
  • [52]Gao D, Nong S, Huang X, Lu Y, Zhao H, Lin Y, Man Y, Wang S, Yang J, Li J: The effects of palmitate on hepatic insulin resistance are mediated by NADPH Oxidase 3-derived reactive oxygen species through JNK and p38MAPK pathways. J. Biol. Chem 2010, 285:29965-29973.
  • [53]Hotamisligil GS: Inflammation and metabolic disorders. Nature 2006, 14:860-867.
  • [54]Iozzo P, Bucci M, Roivainen A, Nagren K, Jarvisalo MJ, Kiss J, Guiducci L, Fielding B, Naum AG, Borra R, Virtanen K, Savunen T, Salvadori PA, Ferrannini E, Knuuti J, Nuutila P: Fatty acid metabolism in the liver, measured by positron emission tomography, is increased in obese individuals. Gastroenterology 2010, 139:846-856.
  • [55]Nakamura S, Takamura T, Matsuzawa-Nagata N, Takayama H, Misu H, Noda H, Nabemoto S, Kurita S, Ota T, Ando H, Miyamoto K, Kaneko S: Palmitate induces insulin resistance in H4IIEC3 hepatocytes through reactive oxygen species produced by mitochondria. J Biol Chem 2009, 284:14809-14818.
  • [56]Satapati S, Sunny NE, Kucejova B, Fu X, He TT, Méndez-Lucas A, Shelton JM, Perales JC, Browning JD, Burgess SC: Elevated TCA cycle function in the pathology of diet-induced hepatic insulin resistance and fatty liver. J Lipid Res 2012, 53:1080-1092.
  • [57]Sunny NE, Parks EJ, Browning JD, Burgess SC: Excessive hepatic mitochondrial TCA cycle and gluconeogenesis in humans with nonalchoholic fatty liver disease. Cell Metab 2011, 14:804-810.
  • [58]Chan SM, Sun RQ, Zeng XY, Choong ZH, Wang H, Watt MJ, Ye JM: Activation of PPARα ameliorates hepatic insulin resistance and steatosis in high fructose-fed mice despite increased endoplasmic reticulum stress. Diabetes 2013, 62:2095-2105.
  • [59]Cheng Z, Guo S, Copps K, Dong X, Kollipara R, Rodgers JT, Depinho RA, Puigserver P, White MF: Foxo1 integrates insulin signaling with mitochondrial function in the liver. Nat Med 2009, 15:1307-1311.
  • [60]Huang J, Jia Y, Fu T, Viswakarma N, Bai L, Rao MS, Zhu Y, Borensztajn J, Reddy JK: Sustained activation of PPARα by endogenous ligands increases hepatic fatty acid oxidation and prevents obesity in ob/ob mice. FASEB J 2012, 26:628-638.
  • [61]Hwang JH, Kim DW, Jo EJ, Kim YK, Jo YS, Park JH, Yoo SK, Park MK, Kwak TH, Kho YL, Han J, Choi HS, Lee SH, Kim JM, Lee I, Kyung T, Jang C, Chung J, Kweon GR, Shong M: Pharmacological stimulation of NADH oxidation ameliorates obesity and related phenotypes in mice. Diabetes 2009, 58:965-974.
  • [62]Monsenego J, Mansouri A, Akkaoui M, Lenoir V, Esnous C, Fauveau V, Tavernier V, Girard J, Prip-Buus C: Enhancing liver mitochondrial fatty acid oxidation capacity in obese mice improves insulin sensitivity independently of hepatic steatosis. J Hepatol 2012, 56:632-639.
  • [63]Orellana-Gavalda JM, Herrero L, Malandrino MI, Paneda A, Sol Rodriguez-Pena M, Petry H, Asins G, Van Deventer S, Hegardt FG, Serra D: Molecular therapy for obesity and diabetes based on a long-term increase in hepatic fattyacid oxidation. Hepatology 2011, 53:821-832.
  • [64]Serra D, Mera P, Malandrino MI, Mir JF, Herrero L: Mitochondrial fatty acid oxidation in obesity. Antioxid Redox Signal 2013, 19:269-284.
  • [65]Boden G, She P, Mozzoli M, Cheung P, Gumireddy K, Reddy P, Xiang X, Luo Z, Ruderman N: Free fatty acids produce insulin resistance and activate the proinflammatory nuclear factor-kB pathway in rat liver. Diabetes 2005, 54:3458-3465.
  • [66]Galbo T, Olsen GS, Quistorff B, Nishimura E: Free fatty acid-induced PP2A hyperactivity selectively impairs hepatic insulin action on glucose metabolism. PLoS One 2011, 6:e27424.
  • [67]Estall JL, Kahn M, Cooper MP, Fisher FM, Wu MK, Laznik D, Qu L, Cohen DE, Shulman GI, Spiegelman BM: Sensitivity of lipid metabolism and insulin signaling to genetic alterations in hepatic peroxisome proliferator-activated receptor-gamma coactivator-1alpha expression. Diabetes 2009, 58:1499-1508.
  • [68]Glick D, Zhang W, Beaton M, Marsboom G, Gruber M, Simon MC, Hart J, Dorn GW 2nd, Brady MJ, Macleod KF: BNip3 regulates mitochondrial function and lipid metabolism in the liver. Mol Cell Biol 2012, 32:2570-2584.
  • [69]Kersten S, Seydoux J, Peters JM, Gonzalez FJ, Desvergne B, Wahli W: Peroxisome proliferator-activated receptor alpha mediates the adaptive response to fasting. J Clin Invest 1999, 103:1489-1498.
  • [70]Koo SH, Satoh H, Herzig S, Lee CH, Hedrick S, Kulkarni R, Evans RM, Olefsky J, Montminy M: PGC-1 promotes insulin resistance in liver through PPAR-alpha-dependent induction of TRB-3. Nat Med 2004, 10:530-534.
  • [71]Kulozik P, Jones A, Mattijssen F, Rose AJ, Reimann A, Strzoda D, Kleinsorg S, Raupp C, Kleinschmidt J, Müller-Decker K, Wahli W, Sticht C, Gretz N, Von Loeffelholz C, Stockmann M, Pfeiffer A, Stöhr S, Dallinga-Thie GM, Nawroth PP, Berriel Diaz M, Herzig S: Hepatic deficiency in transcriptional cofactor TBL1 promotes liver steatosis and hypertriglyceridemia. Cell Metab 2011, 13:389-400.
  • [72]Leone TC, Lehman JJ, Finck BN, Schaeffer PJ, Wende AR, Boudina S, Courtois M, Wozniak DF, Sambandam N, Bernal-Mizrachi C, Chen Z, Holloszy JO, Medeiros DM, Schmidt RE, Saffitz JE, Abel ED, Semenkovich CF, Kelly DP: PGC-1alpha deficiency causes multi-system energy metabolic derangements: muscle dysfunction, abnormal weight control and hepatic steatosis. PLoS Biol 2005, 3:e101.
  • [73]Nyman LR, Tian L, Hamm DA, Schoeb TR, Gower BA, Nagy TR, Wood PA: Long term effects of high fat or high carbohydrate diets on glucose tolerance in mice with heterozygous carnitine palmitoyltransferase-1a (CPT-1a) deficiency: Diet influences on CPT1a deficient mice. Nutr Diabetes 2011, 1:e14.
  • [74]Daitoku H, Yamagata K, Matsuzaki H, Hatta M, Fukamizu A: Regulation of PGC-1 promoter activity by protein kinase B and the forkhead transcription factor FKHR. Diabetes 2003, 52:642-649.
  • [75]Monsénégo J, Mansouri A, Akkaoui M, Lenoir V, Esnous C, Fauveau V, Tavernier V, Girard J, Prip-Buus C: Enhancing liver mitochondrial fatty acid oxidation capacity in obese mice improves insulin sensitivity independently of hepatic steatosis. J Hepatology 2012, 54:632-639.
  • [76]Nagle CA, Klett EI, Coleman RA: Hepatic triacylglycerol accumulation and insulin resistance. J Lipid Res 2009, 50:S74-S79.
  • [77]Samuel VT, Liu ZX, Qu X, Elder BD, Bilz S, Befroy D, Romanelli AJ, Shulman GI: Mechanism of hepatic insulin resistance in non-alcoholic fatty liver disease. J Biol Chem 2004, 279:32345-32353.
  • [78]Muoio DM, Newgard CB: Fatty acid oxidation and insulin action: when less is more. Diabetes 2008, 57:1455-1456.
  • [79]Pospisilik JA, Knauf C, Joza N, Benit P, Orthofer M, Cani PD, Ebersberger I, Nakashima T, Sarao R, Neely G, Esterbauer H, Kozlov A, Kahn CR, Kroemer G, Rustin P, Burcelin R, Penninger JM: Targeted deletion of AIF decreases mitochondrial oxidative phosphorylation and protects from obesity and diabetes. Cell 2007, 131:476-491.
  • [80]Cai D, Yuan M, Frantz DF, Melendez PA, Hansen L, Lee J, Shoelson SE: Local and systemic insulin resistance resulting from hepatic activiation of IKK-B and NFkB. Nat Med 2005, 11:183-190.
  • [81]Petersen KF, Shulman GI: Etiology of insulin resistance. Am J Med 2006, 119(Suppl 1):S10-S16.
  • [82]Vanni E, Abate ML, Gentilcore E, Hickman I, Gambino R, Cassader M, Smedile A, Ferrannini E, Rizzetto M, Marchesini G, Gastaldelli A, Bugianesi E: Sites and mechanisms of insulin resistance in nonobese, nondiabetic patients with chronic hepatitis C. Hepatology 2009, 50:697-706.
  • [83]Hirosumi J, Tuncman G, Chang L, Görgün CZ, Uysal KT, Maeda K, Karin M, Hotamisligil GS: A central role for JNK in obesity and insulin resistance. Nature 2002, 420:333-336.
  • [84]Lim JH, Lee HJ, Jung MH, Song J: Coupling mitochondrial dysfunction to endoplasmic reticulum stress response: A molecular mechanism leading to hepatic insulin resistance. Cell Signal 2009, 21:169-177.
  • [85]Kumashiro N, Tamura Y, Uchida T, Ogihara T, Fujitani Y, Hirose T, Mochizuki H, Kawamori R, Watada H: Impact of oxidative stress and peroxisome proliferator-activated receptor gamma coactivator-1alpha in hepatic insulin resistance. Diabetes 2008, 57:2083-2091.
  • [86]Barthel A, Schmoll D: Novel concepts in insulin regulation of hepatic gluconeogenesis. Am J Physiol Endocrinol Metab 2003, 285:E685-E692.
  • [87]Lin J, Yang R, Tarr PT, Wu PH, Handschin C, Li S, Yang W, Pei L, Uldry M, Tontonoz P, Newgard CB, Spiegelman BM: Hyperlipidemic effects of dietary saturated fats mediated through PGC-1β coactivation of SREBP. Cell 2005, 120:261-273.
  • [88]Morino K, Petersen KF, Shulman GI: Molecular mechanisms of insulin resistance in humans and their potential links with mitochondrial dysfunction. Diabetes 2010, 55:S9-S15.
  • [89]Murphy MP: How mitochondria produce reactive oxygen species. Biochem J 2009, 417:1-13.
  • [90]Finck BN, Kelly DP: PGC-1 coactivators: inducible regulators of energy metabolism in health and disease. J Clin Invest 2006, 116:615-622.
  • [91]Herzig S, Long F, Jhala US, Hedrick S, Quinn R, Bauer A, Rudolph D, Schutz G, Yoon C, Puigserver P, Spiegelman B, Montminy M: CREB regulates hepatic gluconeogenesis through the coactivator PGC-1. Nature 2001, 413:179-183.
  • [92]Miyake K, Ogawa W, Matsumoto M, Nakamura T, Sakaue H, Kasuga M: Hyperinsulinemia, glucose intolerance, and dyslipidemia induced by acute inhibition of phosphoinositide 3-kinase signaling in the liver. J Clin Invest 2002, 110:1483-1491.
  • [93]Puigserver P, Rhee J, Donovan J, Walkey CJ, Yoon JC, Oriente F, Kitamura Y, Altomonte J, Dong H, Accili D, Spiegelman BM: Insulin-regulated hepatic gluconeogenesis through FOXO1-PGC-1alpha interaction. Nature 2003, 423:550-555.
  • [94]Rhee J, Inoue Y, Yoon JC, Puigserver P, Fan M, Gonzalez FJ, Spiegelman BM: Regulation of hepatic fasting response by PPARγ coactivator-1α (PGC-1): requirement for hepatocyte nuclear factor 4α in gluconeogenesis. Proc Natl Acad Sci U S A 2003, 100:4012-4017.
  • [95]Yoon JC, Puigserver P, Chen G, Donovan J, Wu Z, Rhee J, Adelmant G, Stafford J, Kahn CR, Granner DK, Newgard CB, Spiegelman BM: Control of hepatic gluconeogenesis through the transcriptional coactivator PGC-1. Nature 2001, 413:131-138.
  • [96]Zhang Y, Castellani LW, Sinal CJ, Gonzalez FJ, Edwards PA: Peroxisome proliferator-activated receptor-γ coactivator 1α (PGC-1α) regulates triglyceride metabolism by activation of the nuclear receptor FXR. Genes Dev 2004, 18:157-169.
  • [97]Zhou XY, Shibusawa N, Naik K, Porras D, Temple K, Ou H, Kaihara K, Roe MW, Brady MJ, Wondisford FE: Insulin regulation of hepatic gluconeogenesis through phosphorylation of CREB-binding protein. Nat Med 2004, 10:633-637.
  • [98]Nakatani Y, Kaneto H, Kawamori D, Hatazaki M, Miyatsuka T, Matsuoka TA, Kajimoto Y, Matsuhisa M, Yamasaki Y, Hori M: Modulation of the JNK pathway in liver affects insulin resistance status. J Biol Chem 2004, 279:45803-45809.
  • [99]Popa C, Riel PLCM, Meer WM, Stalenhoef AFH: The role of TNF-a in chronic inflammatory conditions, intermediary metabolism, and cardiovascular risk. J Lipid Res 2007, 48:751-762.
  • [100]Torisu T, Sato N, Yoshiga D, Kobayashi T, Yoshioka T, Mori H, Iida M, Yoshimura A: The dual function of hepatic SOCS3 in insulin resistance in vivo. Genes to Cells 2007, 12:143-154.
  • [101]Ueki K, Kondo T, Kahn CR: Central role of suppressors of cytokine signaling proteins in hepatic steatosis, insulin resistance, and the metabolic syndrome in the mouse. Proc Natl Acad Sci USA 2004, 101:10422-10427.
  • [102]Nakae J, Kitamura T, Silver DL, Accili D: The forkhead transcription factor Foxo1 (Fkhr) confers insulin sensitivity onto glucose-6-phosphatase expression. J Clin Invest 2001, 108:1359-1367.
  • [103]Gross DNA, van den Heuvel APJ, Birnbaum MJ: The role of FoxO in the regulation of metabolism. Oncogene 2008, 27:2320-2336.
  • [104]Gross DN, Wan M, Birnbaum MJ: The role of FOXO in the regulation of metabolism. Curr Diabetes Rep 2009, 9:208-214.
  • [105]Liang H, Balas B, Tantiwong P, Dube J, Goodpaster BH, O'Doherty RM, DeFronzo RA, Richardson A, Musi N, Ward WF: Whole body overexpression of PGC-1a has opposite effects on hepatic and muscle insulin sensitivity. Am J Physiol Endocrinol Metab 2009, 296:E945-E954.
  • [106]van den Buuse M, Lambrechts AC: Bromocriptine-induced decrease in blood pressure in conscious spontaneously hypertensive rats: evidence for a peripheral site of action. J Pharm Pharmacol 1989, 41:644-646.
  • [107]Nagai Y, Yonemitsu S, Erion DM, Iwasaki T, Stark R, Weismann D, Dong J, Zhang D, Jurczak MJ, Löffler MG, Cresswell J, Yu XX, Murray SF, Bhanot S, Monia BP, Bogan JS, Samuel V, Shulman GI: The role of peroxisome proliferator-activated receptor gamma coactivator-1 beta in the pathogenesis of fructose-induced insulin resistance. Cell Metab 2009, 9:252-264.
  • [108]Kim JY, Song EH, Lee HJ, Oh YK, Choi KH, Yu DY, Park SI, Seong JK, Kim WH: HBx-induced hepatic steatosis and apoptosis are regulated by TNFR1- and NF-kappaB-dependent pathways. J Mol Biol 2010, 397:917-931.
  • [109]Kim YM, Kim TH, Kim YW, Yang YM, Ryu Da H, Hwang SJ, Lee JR, Kim SC, Kim SG: Inhibition of liver X receptor-α-dependent hepatic steatosis by isoliquiritigenin, a licorice antioxidant flavonoid, as mediated by JNK1 inhibition. Free Radic Biol Med 2010, 49:1722-1734.
  • [110]Singh R, Wang Y, Xiang Y, Tanaka KE, Guarde WA, Czaja MJ: Differential effects of JNK1 and JNK2 inhibition on murine steatohepatitis and insulin resistance. Hepatology 2009, 49:87-96.
  • [111]Musso G, Gambino R, Cassader M: Recent insights into hepatic lipid metabolism in non-alcoholic fatty liver disease (NAFLD). Prog Lipid Res 2009, 48:1-26.
  • [112]Wang D, Wei Y, Pagliassotti MJ: Saturated fatty acids promote endoplasmic reticulum stress and liver injury in rats with hepatic steatosis. Endocrinology 2006, 147:943-951.
  • [113]Werstuck GH, Lentz SR, Dayal S, Hossain GS, Sood SK, Shi YY, Zhou J, Maeda N, Krisans SK, Malinow MR, Austin RC: Homocysteine- induced endoplasmic reticulum stress causes dysregulation of the cholesterol and triglyceride biosynthetic pathways. J Clin Invest 2001, 107:1263-1273.
  • [114]You M, Crabb DW: Molecular mechanisms of alcoholic fatty liver: role of sterol regulatory element-binding proteins. Alcohol 2004, 34:39-43.
  • [115]Gavrilova O, Haluzik M, Matsusue K, Cutson JJ, Johnson L, Dietz KR, Nicol CJ, Vinson C, Gonzalez FJ, Reitman ML: Liver peroxisome proliferator activated receptor gamma contributes to hepatic steatosis, triglyceride clearance, and regulation of body fat mass. J Biol Chem 2003, 278:34268-34276.
  • [116]Matsusue K, Haluzik M, Lambert G, Yim SH, Gavrilova O, Ward JM, Brewer B Jr, Reitman ML, Gonzalez FJ: Liver-specific disruption of PPARgamma in leptin-deficient mice improves fatty liver but aggravates diabetic phenotypes. J Clin Invest 2003, 111:737-747.
  • [117]Savage DB, Tan GD, Acerini CL, Jebb SA, Agostini M, Gurnell M, Williams RL, Umpleby AM, Thomas EL, Bell JD, Dixon AK, Dunne F, Boiani R, Cinti S, Vidal-Puig A, Karpe F, Chatterjee VK, O'Rahilly S: Human metabolic syndrome resulting from dominant-negative mutations in the nuclear receptor peroxisome proliferator-activated receptor-gamma. Diabetes 2003, 52:910-917.
  • [118]Park HJ, Jung UJ, Cho SJ, Jung HK, Shim S, Choi MS: Citrus unshiu peel extract ameliorates hyperglycemia and hepatic steatosis by altering inflammation and hepatic glucose- and lipid-regulating enzymes in db/db mice. J Nutr Biochem 2013, 24:419-427.
  • [119]Kim JH, Kim JE, Liu HY, Cao W, Chen J: Regulation of interleukin-6-induced hepatic insulin resistance by mammalian target of rapamycin through the STAT3-SOCS3 pathway. J Biol Chem 2008, 283:708-715.
  • [120]Liang Y, Cincotta AH: Increased responsiveness to the hyperglycemic, hyperglucagonemic and hyperinsulinemic effects of circulating norepinephrine in ob/ob mice. Int J Obes Relat Metab Disord 2001, 25:698-704.
  • [121]Aguilar E, Rodríguez-Padilla ML, Pinilla L: Normoprolactinaemia in spontaneously hypertensive rats: absence of a close relationship between plasma concentrations of prolactin and systolic blood pressure. J Endocrinol 1990, 125:359-364.
  • [122]Hutchinson JS, Di Nicolantonio R, Lim A, Clements J, Funder JW: Effects of bromocriptine on blood pressure and plasma beta-endorphin in spontaneously hypertensive rats. Clin Sci (Lond) 1981, 61(Suppl 7):343s-345s.
  • [123]Kanayama Y, Kohno M, Takaori K, Itoh S, Yasunari K, Takeda T: Involvement of sympathetic nervous system inhibition in the hypotensive effect of bromocriptine in spontaneously hypertensive rats. Clin Exp Pharmacol Physiol 1987, 14:141-144.
  • [124]Oguro M, Takeda K, Itoh H, Takesako T, Tanaka M, Takenaka K, Hirata M, Nakata T, Tanabe S, Hayashi J: Role of sympathetic nerve inhibition in the vasodepressor effect of bromocriptine in normotensive and hypertensive rats. Jpn Circ J 1992, 56:943-949.
  • [125]Racz K, Kuchel O, Buu NT: Bromocriptine decreases blood pressure of spontaneously hypertensive rats without affecting the adrenomedullary synthesis of catecholamines. J Cardiovasc Pharmacol 1986, 8:676-680.
  • [126]Struyker-Boudier HA, Van Essen H, Smits JF: Haemodynamic effects of bromocriptine in the conscious spontaneously hypertensive rat. J Pharm Pharmacol 1984, 36:123-125.
  • [127]Tan BK, Hutchinson JS: Plasma and pituitary prolactin and blood pressure in bromocriptine-treated spontaneously hypertensive and Wistar-Kyoto rats. Clin Exp Pharmacol Physiol 1987, 14:797-803.
  文献评价指标  
  下载次数:0次 浏览次数:2次