期刊论文详细信息
Journal of Neuroinflammation
Efficient isolation of live microglia with preserved phenotypes from adult mouse brain
Jyoti J Watters1  Maria Nikodemova1 
[1] Department of Comparative Biosciences, University of Wisconsin, Madison, WI, 53706, USA
关键词: Lipopolysaccharide;    CD11b;    Neuroinflammation;    Immunomagnetic separation;    Anti-myelin beads;    Sucrose;    Percoll;    TNF-α;   
Others  :  1212472
DOI  :  10.1186/1742-2094-9-147
 received in 2012-01-05, accepted in 2012-06-28,  发布年份 2012
PDF
【 摘 要 】

Background

Microglial activation plays a key role in the neuroinflammation associated with virtually all CNS disorders, although their role in normal CNS physiology is becoming increasingly appreciated. Neuroinflammation is often assessed by analyzing pro-inflammatory mediators in CNS tissue homogenates, under the assumption that microglia are the main source of these molecules. However, other cell types in the CNS can also synthesize inflammatory molecules. Hence, to enable direct analysis of microglial activities ex vivo, an efficient, reliable, and reproducible method of microglial isolation is needed.

Methods

After enzymatic digestion of brain tissues and myelin removal, CD11b+ cells were isolated using immunomagnetic separation, yielding highly purified microglia without astrocyte or neuronal contamination. We used three methods of myelin removal (30% Percoll, 0.9 mol/l sucrose and anti-myelin magnetic beads), and compared their effects on microglial viability and yield. To determine whether the isolation procedure itself activates microglia, we used flow cytometry to examine microglial properties in brain-tissue homogenates and isolated microglia from control and lipopolysaccharide (LPS) -treated mice.

Results

This method yielded a highly purified CD11b+ cell population with properties that reflected their in vivo phenotype. The viability and yield of isolated cells were significantly affected by the myelin removal method. Although the microglial phenotype was comparable in all methods used, the highest viability and number of CD11b+ cells was obtained with Percoll. Microglia isolated from LPS-treated mice displayed a pro-inflammatory phenotype as determined by upregulated levels of TNF-α, whereas microglia isolated from control mice did not.

Conclusions

Immunomagnetic separation is an efficient method to isolate microglia from the CNS, and is equally suitable for isolating quiescent and activated microglia. This technique allows evaluation of microglial activities ex vivo, which accurately reflects their activities in vivo. Microglia obtained by this method can be used for multiple downstream applications including qRT-PCR, ELISA, Western blotting, and flow cytometry to analyze microglial activities in any number of CNS pathologies or injuries.

【 授权许可】

   
2012 Nikodemova and Watters; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150614094249743.pdf 1312KB PDF download
Figure 6. 72KB Image download
Figure 5. 28KB Image download
Figure 4. 37KB Image download
Figure 3. 64KB Image download
Figure 2. 16KB Image download
Figure 1. 60KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

【 参考文献 】
  • [1]Nimmerjahn A, Kirchhoff F, Helmchen F: Resting microglial cells are highly dynamic surveillants of brain parenchyma in vivo. Science 2005, 308:1314-1318.
  • [2]Aloisi F: Immune function of microglia. Glia 2001, 36:165-179.
  • [3]Wake H, Moorhouse AJ, Jinno S, Kohsaka S, Nabekura J: Resting microglia directly monitor the functional state of synapses in vivo and determine the fate of ischemic terminals. J Neurosci 2009, 29:3974-3980.
  • [4]Kitayama M, Ueno M, Itakura T, Yamashita T: Activated microglia inhibit axonal growth through RGMa. PLoS One 2011, 6:e25234.
  • [5]Zhang SC, Goetz BD, Carre JL, Duncan ID: Reactive microglia in dysmyelination and demyelination. Glia 2001, 34:101-109.
  • [6]Gonzalez-Scarano F, Baltuch G: Microglia as mediators of inflammatory and degenerative diseases. Annu Rev Neurosci 1999, 22:219-240.
  • [7]Raivich G, Banati R: Brain microglia and blood-derived macrophages: molecular profiles and functional roles in multiple sclerosis and animal models of autoimmune demyelinating disease. Brain Res Brain Res Rev 2004, 46:261-281.
  • [8]Narantuya D, Nagai A, Sheikh AM, Masuda J, Kobayashi S, Yamaguchi S, Kim SU: Human microglia transplanted in rat focal ischemia brain induce neuroprotection and behavioral improvement. PLoS One 2010, 5:e11746.
  • [9]Festoff BW, Ameenuddin S, Arnold PM, Wong A, Santacruz KS, Citron BA: Minocycline neuroprotects, reduces microgliosis, and inhibits caspase protease expression early after spinal cord injury. J Neurochem 2006, 97:1314-1326.
  • [10]Jimenez S, Baglietto-Vargas D, Caballero C, Moreno-Gonzalez I, Torres M, Sanchez-Varo R, Ruano D, Vizuete M, Gutierrez A, Vitorica J: Inflammatory response in the hippocampus of PS1M146L/APP751SL mouse model of Alzheimer's disease: age-dependent switch in the microglial phenotype from alternative to classic. J Neurosci 2008, 28:11650-11661.
  • [11]Windelborn JA, Mitchell GS: Glial activation in the spinal ventral horn caudal to cervical injury. Respir Physiol Neurobiol 2012, 180(1):61-68.
  • [12]Wirths O, Breyhan H, Marcello A, Cotel MC, Bruck W, Bayer TA: Inflammatory changes are tightly associated with neurodegeneration in the brain and spinal cord of the APP/PS1KI mouse model of Alzheimer's disease. Neurobiol Aging 2011, 31:747-757.
  • [13]Kooij G, Mizee MR, van Horssen J, Reijerkerk A, Witte ME, Drexhage JA, van der Pol SM, van Het Hof B, Scheffer G, Scheper R, et al.: Adenosine triphosphate-binding cassette transporters mediate chemokine (C-C motif) ligand 2 secretion from reactive astrocytes: relevance to multiple sclerosis pathogenesis. Brain 2011, 134:555-570.
  • [14]Gorina R, Font-Nieves M, Marquez-Kisinousky L, Santalucia T, Planas AM: Astrocyte TLR4 activation induces a pro-inflammatory environment through the interplay between MyD88-dependent NFkappaB signaling, MAPK, and Jak1/Stat1 pathways. Glia 2011, 59:242-255.
  • [15]Burkert K, Moodley K, Angel CE, Brooks A, Graham ES: Detailed analysis of inflammatory and neuromodulatory cytokine secretion from human NT2 astrocytes using multiplex bead array. Neurochem Int 2012, 60:573-580.
  • [16]Crain JM, Nikodemova M, Watters JJ: Expression of P2 nucleotide receptors varies with age and sex in murine brain microglia. J Neuroinflammation 2009, 6:24. BioMed Central Full Text
  • [17]Nikodemova M, Watters JJ: Outbred ICR/CD1 mice display more severe neuroinflammation mediated by microglial TLR4/CD14 activation than inbred C57Bl/6 mice. Neuroscience 2011, 190:67-74.
  • [18]Marek R, Caruso M, Rostami A, Grinspan JB, Das Sarma J: Magnetic cell sorting: a fast and effective method of concurrent isolation of high purity viable astrocytes and microglia from neonatal mouse brain tissue. J Neurosci Methods 2008, 175:108-118.
  • [19]de Haas AH, Boddeke HW, Brouwer N, Biber K: Optimized isolation enables ex vivo analysis of microglia from various central nervous system regions. Glia 2007, 55:1374-1384.
  • [20]Stanley AC, Lacy P: Pathways for cytokine secretion. Physiology (Bethesda) 2011, 25:218-229.
  • [21]Stow JL, Low PC, Offenhauser C, Sangermani D: Cytokine secretion in macrophages and other cells: pathways and mediators. Immunobiology 2009, 214:601-612.
  文献评价指标  
  下载次数:33次 浏览次数:9次