期刊论文详细信息
Cilia
Functional modelling of a novel mutation in BBS5
John A Sayer2  Brian Meyer1  Roslyn J Simms2  Riham El Sayed3  Fatimah Al-Fadhly4  Lorraine Eley2  Paul Chrystal2  Ann Marie Hynes2  Charles van Lennep2  Mohamed H Al-Hamed1 
[1] Genetics Department King Faisal Specialist Hospital and Research Centre, PO Box 3354, Riyadh 11211, Saudi Arabia;International Centre for Life, Institute of Genetic Medicine, Newcastle University, Central Parkway, Newcastle NE1 3BZ, UK;Department of Clinical and Chemical Pathology, Kasr Al-Ainy Faculty of Medicine, Cairo University, Cairo, Egypt;Department of Paediatrics, Maternity & Children’s Hospital, PO Box 6205, Al Madina, Al Munawara, Saudi Arabia
关键词: Retinopathy;    Situs inversus;    Cilia;    Pronephros;    Zebrafish;    BBS;   
Others  :  790718
DOI  :  10.1186/2046-2530-3-3
 received in 2013-04-22, accepted in 2014-02-04,  发布年份 2014
PDF
【 摘 要 】

Background

Bardet-Biedl syndrome (BBS) is an autosomal recessive ciliopathy disorder with 18 known causative genes (BBS1-18). The primary clinical features are renal abnormalities, rod-cone dystrophy, post-axial polydactyly, learning difficulties, obesity and male hypogonadism.

Results

We describe the clinical phenotype in three Saudi siblings in whom we have identified a novel mutation in exon 12 of BBS5 (c.966dupT; p.Ala323CysfsX57). This single nucleotide duplication creates a frame shift results in a predicted elongated peptide. Translation blocking Morpholino oligonucleotides were used to create zebrafish bbs5 morphants. Morphants displayed retinal layering defects, abnormal cardiac looping and dilated, cystic pronephric ducts with reduced cilia expression. Morphants also displayed significantly reduced dextran clearance via the pronephros compared to wildtype embryos, suggesting reduced renal function in morphants. The eye, kidney and heart defects reported in morphant zebrafish resemble the human phenotype of BBS5 mutations. The pathogenicity of the novel BBS5 mutation was determined. Mutant mRNA was unable to rescue pleiotropic phenotypes of bbs5 morphant zebrafish and in cell culture we demonstrate a mislocalisation of mutant BBS5 protein which fails to localise discretely with the basal body.

Conclusions

We conclude that this novel BBS5 mutation has a deleterious function that accounts for the multisystem ciliopathy phenotype seen in affected human patients.

【 授权许可】

   
2014 Al-Hamed et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20140705002456531.pdf 6740KB PDF download
Figure 6. 92KB Image download
Figure 5. 99KB Image download
Figure 4. 71KB Image download
Figure 3. 65KB Image download
Figure 2. 90KB Image download
Figure 1. 88KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

【 参考文献 】
  • [1]Beales PL, Warner AM, Hitman GA, Thakker R, Flinter FA: Bardet-Biedl syndrome: a molecular and phenotypic study of 18 families. J Med Genet 1997, 34:92-98.
  • [2]Klein D, Ammann F: The syndrome of Laurence-Moon-Bardet-Biedl and allied diseases in Switzerland: clinical, genetic and epidemiological studies. J Neurol Sci 1969, 9:479-513.
  • [3]Moore SJ, Green JS, Fan Y, Bhogal AK, Dicks E, Fernandez BA, Stefanelli M, Murphy C, Cramer BC, Dean JC, et al.: Clinical and genetic epidemiology of Bardet-Biedl syndrome in Newfoundland: a 22-year prospective, population-based, cohort study. Am J Med Genet A 2005, 132:352-360.
  • [4]Farag TI, Teebi AS: High incidence of Bardet-Biedl syndrome among the Bedouin. Clin Genet 1989, 36:463-464.
  • [5]Rahman P, Jones A, Curtis J, Bartlett S, Peddle L, Fernandez BA, Freimer NB: The Newfoundland population: a unique resource for genetic investigation of complex diseases. Hum Mol Genet 2003, 12 Spec Number 2:R167-R172.
  • [6]Teebi AS: Genetic disorders among Arab populations. 2nd edition. Springer; 2010.
  • [7]Beales PL, Elcioglu N, Woolf AS, Parker D, Flinter FA: New criteria for improved diagnosis of Bardet-Biedl syndrome: results of a population survey. J Med Genet 1999, 36:437-446.
  • [8]O’Dea D, Parfrey PS, Harnett JD, Hefferton D, Cramer BC, Green J: The importance of renal impairment in the natural history of Bardet-Biedl syndrome. Am J Kidney Dis 1996, 27:776-783.
  • [9]Putoux A, Attie-Bitach T, Martinovic J, Gubler MC: Phenotypic variability of Bardet-Biedl syndrome: focusing on the kidney. Pediatr Nephrol 2012, 27:7-15.
  • [10]Riise R, Andreasson S, Borgastrom MK, Wright AF, Tommerup N, Rosenberg T, Tornqvist K: Intrafamilial variation of the phenotype in Bardet-Biedl syndrome. Br J Ophthalmol 1997, 81:378-385.
  • [11]Elbedour K, Zucker N, Zalzstein E, Barki Y, Carmi R: Cardiac abnormalities in the Bardet-Biedl syndrome: echocardiographic studies of 22 patients. Am J Med Genet 1994, 52:164-169.
  • [12]Deffert C, Niel F, Mochel F, Barrey C, Romana C, Souied E, Stoetzel C, Goossens M, Dollfus H, Verloes A, et al.: Recurrent insertional polydactyly and situs inversus in a Bardet-Biedl syndrome family. Am J Med Genet A 2007, 143:208-213.
  • [13]Kulaga HM, Leitch CC, Eichers ER, Badano JL, Lesemann A, Hoskins BE, Lupski JR, Beales PL, Reed RR, Katsanis N: Loss of BBS proteins causes anosmia in humans and defects in olfactory cilia structure and function in the mouse. Nat Genet 2004, 36:994-998.
  • [14]Forsythe E, Beales PL: Bardet-Biedl syndrome. Eur J Hum Genet 2013, 21:8-13.
  • [15]Marion V, Stutzmann F, Gerard M, De Melo C, Schaefer E, Claussmann A, Helle S, Delague V, Souied E, Barrey C, et al.: Exome sequencing identifies mutations in LZTFL1, a BBSome and smoothened trafficking regulator, in a family with Bardet-Biedl syndrome with situs inversus and insertional polydactyly. J Med Genet 2012, 49:317-321.
  • [16]Scheidecker S, Etard C, Pierce NW, Geoffroy V, Schaefer E, Muller J, Chennen K, Flori E, Pelletier V, Poch O, et al.: Exome sequencing of Bardet-Biedl syndrome patient identifies a null mutation in the BBSome subunit BBIP1 (BBS18). J Med Genet 2014, 51:132-6.
  • [17]Li JB, Gerdes JM, Haycraft CJ, Fan Y, Teslovich TM, May-Simera H, Li H, Blacque OE, Li L, Leitch CC, et al.: Comparative genomics identifies a flagellar and basal body proteome that includes the BBS5 human disease gene. Cell 2004, 117:541-552.
  • [18]Nachury MV, Loktev AV, Zhang Q, Westlake CJ, Peranen J, Merdes A, Slusarski DC, Scheller RH, Bazan JF, Sheffield VC, Jackson PK: A core complex of BBS proteins cooperates with the GTPase Rab8 to promote ciliary membrane biogenesis. Cell 2007, 129:1201-1213.
  • [19]Jean S, Kiger AA: Coordination between RAB GTPase and phosphoinositide regulation and functions. Nat Rev Mol Cell Biol 2012, 13:463-470.
  • [20]Huang CJ, Tu CT, Hsiao CD, Hsieh FJ, Tsai HJ: Germ-line transmission of a myocardium-specific GFP transgene reveals critical regulatory elements in the cardiac myosin light chain 2 promoter of zebrafish. Dev Dyn 2003, 228:30-40.
  • [21]Simms RJ, Hynes AM, Eley L, Inglis D, Chaudhry B, Dawe HR, Sayer JA: Modelling a ciliopathy: Ahi1 knockdown in model systems reveals an essential role in brain, retinal, and renal development. Cell Mol Life Sci 2011, 69:993-1009.
  • [22]Detrich WH, Westerfield M, Zon LI: The zebrafish: genetics, genomics and informatics. In Methods in Cell Biology. 104th edition. Edited by Wilson L, Matsudaira PT. Academic Press; 2011.
  • [23]Robu ME, Larson JD, Nasevicius A, Beiraghi S, Brenner C, Farber SA, Ekker SC: p53 activation by knockdown technologies. PLoS Genet 2007, 3:e78.
  • [24]Bedell VM, Westcot SE, Ekker SC: Lessons from morpholino-based screening in zebrafish. Brief Funct Genomics 2011, 10:181-188.
  • [25]Graham FL, Smiley J, Russell WC, Nairn R: Characteristics of a human cell line transformed by DNA from human adenovirus type 5. J Gen Virol 1977, 36:59-74.
  • [26]Yen HJ, Tayeh MK, Mullins RF, Stone EM, Sheffield VC, Slusarski DC: Bardet-Biedl syndrome genes are important in retrograde intracellular trafficking and Kupffer’s vesicle cilia function. Hum Mol Genet 2006, 15:667-677.
  • [27]Tayeh MK, Yen HJ, Beck JS, Searby CC, Westfall TA, Griesbach H, Sheffield VC, Slusarski DC: Genetic interaction between Bardet-Biedl syndrome genes and implications for limb patterning. Hum Mol Genet 2008, 17:1956-1967.
  • [28]Hentschel DM, Park KM, Cilenti L, Zervos AS, Drummond I, Bonventre JV: Acute renal failure in zebrafish: a novel system to study a complex disease. Am J Physiol Renal Physiol 2005, 288:F923-F929.
  • [29]Tobin JL, Beales PL: Restoration of renal function in zebrafish models of ciliopathies. Pediatr Nephrol 2008, 23:2095-2099.
  • [30]Fan Y, Esmail MA, Ansley SJ, Blacque OE, Boroevich K, Ross AJ, Moore SJ, Badano JL, May-Simera H, Compton DS, et al.: Mutations in a member of the Ras superfamily of small GTP-binding proteins causes Bardet-Biedl syndrome. Nat Genet 2004, 36:989-993.
  • [31]Katsanis N: The oligogenic properties of Bardet-Biedl syndrome. Hum Mol Genet 2004, 13 Spec No 1:R65-R71.
  • [32]Knodler A, Feng S, Zhang J, Zhang X, Das A, Peranen J, Guo W: Coordination of Rab8 and Rab11 in primary ciliogenesis. Proc Natl Acad Sci U S A 2010, 107:6346-6351.
  • [33]Wiens CJ, Tong Y, Esmail MA, Oh E, Gerdes JM, Wang J, Tempel W, Rattner JB, Katsanis N, Park HW, Leroux MR: Bardet-Biedl syndrome-associated small GTPase ARL6 (BBS3) functions at or near the ciliary gate and modulates Wnt signalling. J Biol Chem 2010, 285:16218-16230.
  • [34]Zhang Q, Nishimura D, Seo S, Vogel T, Morgan DA, Searby C, Bugge K, Stone EM, Rahmouni K, Sheffield VC: Bardet-Biedl syndrome 3 (Bbs3) knockout mouse model reveals common BBS-associated phenotypes and Bbs3 unique phenotypes. Proc Natl Acad Sci U S A 2011, 108:20678-20683.
  • [35]Lechtreck KF, Johnson EC, Sakai T, Cochran D, Ballif BA, Rush J, Pazour GJ, Ikebe M, Witman GB: The Chlamydomonas reinhardtii BBSome is an IFT cargo required for export of specific signalling proteins from flagella. J Cell Biol 2009, 187:1117-1132.
  • [36]Young TL, Penney L, Woods MO, Parfrey PS, Green JS, Hefferton D, Davidson WS: A fifth locus for Bardet-Biedl syndrome maps to chromosome 2q31. Am J Hum Genet 1999, 64:900-904.
  • [37]Abu Safieh L, Aldahmesh MA, Shamseldin H, Hashem M, Shaheen R, Alkuraya H, Al Hazzaa SA, Al-Rajhi A, Alkuraya FS: Clinical and molecular characterisation of Bardet-Biedl syndrome in consanguineous populations: the power of homozygosity mapping. J Med Genet 2010, 47:236-241.
  • [38]Muller J, Stoetzel C, Vincent MC, Leitch CC, Laurier V, Danse JM, Helle S, Marion V, Bennouna-Greene V, Vicaire S, et al.: Identification of 28 novel mutations in the Bardet-Biedl syndrome genes: the burden of private mutations in an extensively heterogeneous disease. Hum Genet 2010, 127:583-593.
  • [39]Harville HM, Held S, Diaz-Font A, Davis EE, Diplas BH, Lewis RA, Borochowitz ZU, Zhou W, Chaki M, MacDonald J, et al.: Identification of 11 novel mutations in eight BBS genes by high-resolution homozygosity mapping. J Med Genet 2010, 47:262-267.
  • [40]Chen J, Smaoui N, Hammer MB, Jiao X, Riazuddin SA, Harper S, Katsanis N, Riazuddin S, Chaabouni H, Berson EL, Hejtmancik JF: Molecular analysis of Bardet-Biedl syndrome families: report of 21 novel mutations in 10 genes. Invest Ophthalmol Vis Sci 2011, 52:5317-5324.
  • [41]Abu-Safieh L, Al-Anazi S, Al-Abdi L, Hashem M, Alkuraya H, Alamr M, Sirelkhatim MO, Al-Hassnan Z, Alkuraya B, Mohamed JY, et al.: In search of triallelism in Bardet-Biedl syndrome. Eur J Hum Genet 2012, 20:420-427.
  • [42]Hjortshoj TD, Gronskov K, Philp AR, Nishimura DY, Adeyemo A, Rotimi CN, Sheffield VC, Rosenberg T, Brondum-Nielsen K: Novel mutations in BBS5 highlight the importance of this gene in non-Caucasian Bardet-Biedl syndrome patients. Am J Med Genet A 2008, 146A:517-520.
  • [43]Feuillan PP, Ng D, Han JC, Sapp JC, Wetsch K, Spaulding E, Zheng YC, Caruso RC, Brooks BP, Johnston JJ, et al.: Patients with Bardet-Biedl syndrome have hyperleptinemia suggestive of leptin resistance. J Clin Endocrinol Metab 2011, 96:E528-E535.
  • [44]Smaoui N, Chaabouni M, Sergeev YV, Kallel H, Li S, Mahfoudh N, Maazoul F, Kammoun H, Gandoura N, Bouaziz A, et al.: Screening of the eight BBS genes in Tunisian families: no evidence of triallelism. Invest Ophthalmol Vis Sci 2006, 47:3487-3495.
  • [45]Zaghloul NA, Liu Y, Gerdes JM, Gascue C, Oh EC, Leitch CC, Bromberg Y, Binkley J, Leibel RL, Sidow A, et al.: Functional analyses of variants reveal a significant role for dominant negative and common alleles in oligogenic Bardet-Biedl syndrome. Proc Natl Acad Sci U S A 2010, 107:10602-10607.
  • [46]Sayer JA, Otto EA, O’Toole JF, Nurnberg G, Kennedy MA, Becker C, Hennies HC, Helou J, Attanasio M, Fausett BV, et al.: The centrosomal protein nephrocystin-6 is mutated in Joubert syndrome and activates transcription factor ATF4. Nat Genet 2006, 38:674-681.
  • [47]Bachmann-Gagescu R, Phelps IG, Stearns G, Link BA, Brockerhoff SE, Moens CB, Doherty D: The ciliopathy gene cc2d2a controls zebrafish photoreceptor outer segment development through a role in Rab8-dependent vesicle trafficking. Hum Mol Genet 2011, 20:4041-4055.
  • [48]Collin GB, Won J, Hicks WL, Cook SA, Nishina PM, Naggert JK: Meckelin is necessary for photoreceptor intraciliary transport and outer segment morphogenesis. Invest Ophthalmol Vis Sci 2012, 53:967-974.
  • [49]Adams M, Simms RJ, Abdelhamed Z, Dawe HR, Szymanska K, Logan CV, Wheway G, Pitt E, Gull K, Knowles MA, et al.: A meckelin-filamin A interaction mediates ciliogenesis. Hum Mol Genet 2011, s.
  • [50]Hudak LM, Lunt S, Chang CH, Winkler E, Flammer H, Lindsey M, Perkins BD: The intraflagellar transport protein ift80 is essential for photoreceptor survival in a zebrafish model of Jeune asphyxiating thoracic dystrophy. Invest Ophthalmol Vis Sci 2010, 51:3792-3799.
  • [51]Zhou W, Dai J, Attanasio M, Hildebrandt F: Nephrocystin-3 is required for ciliary function in zebrafish embryos. Am J Physiol Renal Physiol 2010, 299:F55-F62.
  • [52]Slanchev K, Putz M, Schmitt A, Kramer-Zucker A, Walz G: Nephrocystin-4 is required for pronephric duct-dependent cloaca formation in zebrafish. Hum Mol Genet 2011, 20:3119-3128.
  • [53]Chaki M, Airik R, Ghosh AK, Giles RH, Chen R, Slaats GG, Wang H, Hurd TW, Zhou W, Cluckey A, et al.: Exome capture reveals ZNF423 and CEP164 mutations, linking renal ciliopathies to DNA damage response signalling. Cell 2012, 150:533-548.
  • [54]Veleri S, Bishop K, Dalle Nogare DE, English MA, Foskett TJ, Chitnis A, Sood R, Liu P, Swaroop A: Knockdown of Bardet-Biedl syndrome gene BBS9/PTHB1 leads to cilia defects. PLoS One 2012, 7:e34389.
  • [55]Pretorius PR, Aldahmesh MA, Alkuraya FS, Sheffield VC, Slusarski DC: Functional analysis of BBS3 A89V that results in non-syndromic retinal degeneration. Hum Mol Genet 2011, 20:1625-1632.
  • [56]Essner JJ, Amack JD, Nyholm MK, Harris EB, Yost HJ: Kupffer’s vesicle is a ciliated organ of asymmetry in the zebrafish embryo that initiates left-right development of the brain, heart and gut. Development 2005, 132:1247-1260.
  • [57]Kramer-Zucker AG, Olale F, Haycraft CJ, Yoder BK, Schier AF, Drummond IA: Cilia-driven fluid flow in the zebrafish pronephros, brain and Kupffer’s vesicle is required for normal organogenesis. Development 2005, 132:1907-1921.
  • [58]Tobin JL, Beales PL: Bardet-Biedl syndrome: beyond the cilium. Pediatr Nephrol 2007, 22:926-936.
  • [59]Harnett JD, Green JS, Cramer BC, Johnson G, Chafe L, McManamon P, Farid NR, Pryse-Phillips W, Parfrey PS: The spectrum of renal disease in Laurence-Moon-Biedl syndrome. N Engl J Med 1988, 319:615-618.
  • [60]Krishnan R, Eley L, Sayer JA: Urinary concentration defects and mechanisms underlying nephronophthisis. Kidney Blood Press Res 2008, 31:152-162.
  • [61]Bettencourt-Dias M, Hildebrandt F, Pellman D, Woods G, Godinho SA: Centrosomes and cilia in human disease. Trends Genet 2011, 27:307-315.
  文献评价指标  
  下载次数:8次 浏览次数:14次