期刊论文详细信息
Cilia
Situs inversus and ciliary abnormalities: 20 years later, what is the connection?
Hiroshi Hamada1  Bernd Dworniczak3  Tabea Menchen2  Petra Pennekamp2 
[1] Graduate School of Frontier Biosciences, Osaka University, Osaka, Japan;Department of General Pediatrics, University Children’s Hospital Muenster, Muenster, 48149, Germany;Department of Human Genetics, University Hospital Muenster, Muenster, 48149, Germany
关键词: Sensory cilia;    Motile cilia;    Planar cell polarity;    Two cilia model;    Nodal flow;    Nodal;    Node;    Left-right organizer;    Cilia;    Situs inversus;   
Others  :  1092714
DOI  :  10.1186/s13630-014-0010-9
 received in 2014-08-18, accepted in 2014-11-26,  发布年份 2015
PDF
【 摘 要 】

Heterotaxy (also known as situs ambiguous) and situs inversus totalis describe disorders of laterality in which internal organs do not display their typical pattern of asymmetry. First described around 1600 by Girolamo Fabrizio, numerous case reports about laterality disorders in humans were published without any idea about the underlying cause. Then, in 1976, immotile cilia were described as the cause of a human syndrome that was previously clinically described, both in 1904 by AK Siewert and in 1933 by Manes Kartagener, as an association of situs inversus with chronic sinusitis and bronchiectasis, now commonly known as Kartagener’s syndrome. Despite intense research, the underlying defect of laterality disorders remained unclear. Nearly 20 years later in 1995, Björn Afzelius discussed five hypotheses to explain the connection between ciliary defects and loss of laterality control in a paper published in the International Journal of Developmental Biology asking: ‘Situs inversus and ciliary abnormalities: What is the connection?’. Here, nearly 20 research years later, we revisit some of the key findings that led to the current knowledge about the connection between situs inversus and ciliary abnormalities.

【 授权许可】

   
2015 Pennekamp et al.; licensee BioMed Central.

【 预 览 】
附件列表
Files Size Format View
20150130151101577.pdf 954KB PDF download
Figure 3. 47KB Image download
Figure 2. 115KB Image download
Figure 1. 55KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

【 参考文献 】
  • [1]Sutherland MJ, Ware SM: Disorders of left-right asymmetry: heterotaxy and situs inversus. Am J Med Genet C Semin Med Genet 2009, 151C:307-317.
  • [2]Aylsworth AS: Clinical aspects of defects in the determination of laterality. Am J Med Genet 2001, 101:345-355.
  • [3]Casey B: Two rights make a wrong: human left-right malformations. Hum Mol Genet 1998, 7:1565-1571.
  • [4]Cleveland M: Situs inversus viscerum: an anatomic study. Arch Surg 1926, 13(3):343-368.
  • [5]Baillie M Account of a Remarkable Transposition of the Viscera. By Matthew Baillie, M. D. In a Letter to John Hunter, Esq. F. R. S. Philos Trans Royal Soc London 78:350–363
  • [6]Siewert A: Über einen Fall von Bronchiectasie bei einem Patienten mit situs inversus viscerum. Berl Klin Wochenschr 1904, 41:139-141.
  • [7]Kartagener M: Zur Pathogenese der Bronchiektasen. 1. Mitteilung: Bronchiektasien bei Situs viscerum inversus. Beitr Klin Tuberk 1933, 83:489-501.
  • [8]Rossman C, Forrest J, Newhouse M: Motile cilia in “immotile cilia” syndrome. Lancet 1980, 1:1360.
  • [9]Sleigh MA: Primary ciliary dyskinesia. Lancet 1981, 2:476.
  • [10]Glang E: Geburtshindernis infolge von beiderseitigen Cystennieren, verbunden mit Pancreascyste und situs inversus. Universität Leipzig, Doctoral dissertation; 1904.
  • [11]McGrath J, Somlo S, Makova S, Tian X, Brueckner M: Two populations of node monocilia initiate left-right asymmetry in the mouse. Cell 2003, 114:61-73.
  • [12]Afzelius B: Electron microscopy of the sperm tail; results obtained with a new fixative. J Biophys Biochem Cytol 1959, 5:269-278.
  • [13]Pedersen H, Rebbe H: Absence of arms in the axoneme of immobile human spermatozoa. Biol Reprod 1975, 12:541-544.
  • [14]Afzelius BA, Eliasson R, Johnsen O, Lindholmer C: Lack of dynein arms in immotile human spermatozoa. J Cell Biol 1975, 66:225-232.
  • [15]Berdon WE, McManus C, Afzelius B: More on Kartagener’s syndrome and the contributions of Afzelius and A.K. Siewert. Pediatr Radiol 2004, 34:585-586.
  • [16]Camner P, Mossberg B, Afzelius BA: Evidence of congenitally nonfunctioning cilia in the tracheobronchial tract in two subjects. Am Rev Respir Dis 1975, 112:807-809.
  • [17]Afzelius BA: A human syndrome caused by immotile cilia. Science 1976, 193:317-319.
  • [18]Pedersen H, Mygind N: Absence of axonemal arms in nasal mucosa cilia in Kartagener’s syndrome. Nature 1976, 262:494-495.
  • [19]Berdon WE, Willi U: Situs inversus, bronchiectasis, and sinusitis and its relation to immotile cilia: history of the diseases and their discoverers-Manes Kartagener and Bjorn Afzelius. Pediatr Radiol 2004, 34:38-42.
  • [20]Rash J, Shay J, Biesele J: Cilia in cardiac differentiation. J Ultrastruct Res 1969, 29:470-484.
  • [21]Viebahn C: Hensen’s node. Genesis 2001, 29:96-103.
  • [22]Spemann H, Mangold H: Über Induktion von Embryonalanlagen durch Implantation artfremder Organisatoren. Arch mikr Anat und Entw mech 1924, 100:599-638.
  • [23]Wetzel R: Undersuchungen am Huehnerkeim. 1. ueber die Untersuchungen des lebenden Keims mit neueren Methoden, besonders der Vogtschen vitalen Farbmarkierung. Wilhelm Roux Arch Entwicklungsmech 1925, 106:463-468.
  • [24]Waddington C: Induction by the primitive streak and its derivatives in the chick. J Exp Biol 1933, 10:38-46.
  • [25]Waddington C: Experiments on determination in the rabbit embryo. Arch Biol 1937, 48:273-290.
  • [26]Hensen V: Beobachtungen ueber die Befruchtung und Entwicklung des Kaninchens und Meerschweinchens. Z Anat Entwickl Gesch 1876, 1:213-273.
  • [27]Sulik K, Dehart DB, Iangaki T, Carson JL, Vrablic T, Gesteland K, Schoenwolf GC: Morphogenesis of the murine node and notochordal plate. Dev Dyn 1994, 201:260-278.
  • [28]Poelmann R: The head-process and the formation of the definitive endoderm in the mouse embryo. Anat Embryol 1981, 162:41-49.
  • [29]Jurand A: Some aspects of the development of the notochord in mouse embryos. J Embryol Exp Morphol 1974, 32:1-33.
  • [30]Theiler K: Stage 11 neural plate, presomite stage. In The house mouse: atlas of embryonic development. Springer-Verlag, Heidelberg; 1989:29-33.
  • [31]Beddington RS: Three-dimensional representation of mouse gastrulation. In CIBA Foundation Symposium 165 on Postimplantation Development in the Mouse: 3–5 June 1991. Edited by Chadwick DJ, Marsh J. John Wiley & Sons, London; 1992:55-59.
  • [32]Blum M, Andre P, Muders K, Schweickert A, Fischer A, Bitzer E, Bogusch S, Beyer T, van Straaten HW, Viebahn C: Ciliation and gene expression distinguish between node and posterior notochord in the mammalian embryo. Differentiation 2007, 75:133-146.
  • [33]Layton WM Jr: Heart malformations in mice homozygous for a gene causing situs inversus. Birth Defects Orig Artic Ser 1978, 14:277-293.
  • [34]Afzelius BA: Situs inversus and ciliary abnormalities. What is the connection? Int J Dev Biol 1995, 39:839-844.
  • [35]Lofberg J: Preparation of amphibian embryos for scanning electron microscopy of the functional pattern of epidermal cilia. ZOON 1974, 2:3-11.
  • [36]Zhou X, Sasaki H, Lowe L, Hogan BL, Kuehn MR: Nodal is a novel TGF-beta-like gene expressed in the mouse node during gastrulation. Nature 1993, 361:543-547.
  • [37]Collignon J, Varlet I, Robertson EJ: Relationship between asymmetric nodal expression and the direction of embryonic turning. Nature 1996, 381:155-158.
  • [38]Lowe LA, Supp DM, Sampath K, Yokoyama T, Wright CV, Potter SS, Overbeek P, Kuehn MR: Conserved left-right asymmetry of nodal expression and alterations in murine situs inversus. Nature 1996, 381:158-161.
  • [39]Hummel K, Chapmann D: Situs Viscerum Inversus. Mouse News Lett 1956, 14:21.
  • [40]Yokoyama T, Copeland NG, Jenkins NA, Montgomery CA, Elder FF, Overbeek PA: Reversal of left-right asymmetry: a situs inversus mutation. Science 1993, 260:679-682.
  • [41]Levin M, Johnson RL, Stern CD, Kuehn M, Tabin C: A molecular pathway determining left-right asymmetry in chick embryogenesis. Cell 1995, 82:803-814.
  • [42]Ang SL, Rossant J: HNF-3 beta is essential for node and notochord formation in mouse development. Cell 1994, 78:561-574.
  • [43]Meno C, Saijoh Y, Fujii H, Ikeda M, Yokoyama T, Yokoyama M, Toyoda Y, Hamada H: Left-right asymmetric expression of the TGF beta-family member lefty in mouse embryos. Nature 1996, 381:151-155.
  • [44]Meno C, Ito Y, Saijoh Y, Matsuda Y, Tashiro K, Kuhara S, Hamada H: Two closely-related left-right asymmetrically expressed genes, lefty-1 and lefty-2: their distinct expression domains, chromosomal linkage and direct neutralizing activity in Xenopus embryos. Genes Cells 1997, 2:513-524.
  • [45]Ryan AK, Blumberg B, Rodriguez-Esteban C, Yonei-Tamura S, Tamura K, Tsukui T, de la Pena J, Sabbagh W, Greenwald J, Choe S, Norris DP, Robertson EJ, Evans RM, Rosenfeld MG, Izpisua Belmonte JC: Pitx2 determines left-right asymmetry of internal organs in vertebrates. Nature 1998, 394:545-551.
  • [46]Yoshioka H, Meno C, Koshiba K, Sugihara M, Itoh H, Ishimaru Y, Inoue T, Ohuchi H, Semina EV, Murray JC, Hamada H, Noji S: Pitx2, a bicoid-type homeobox gene, is involved in a lefty-signaling pathway in determination of left-right asymmetry. Cell 1998, 94:299-305.
  • [47]Brueckner M, D’Eustachio P, Horwich AL: Linkage mapping of a mouse gene, iv, that controls left-right asymmetry of the heart and viscera. Proc Natl Acad Sci U S A 1989, 86:5035-5038.
  • [48]Supp DM, Witte DP, Potter SS, Brueckner M: Mutation of an axonemal dynein affects left-right asymmetry in inversus viscerum mice. Nature 1997, 389:963-966.
  • [49]Bellomo D, Lander A, Harragan I, Brown NA: Cell proliferation in mammalian gastrulation: the ventral node and notochord are relatively quiescent. Dev Dyn 1996, 205:471-485.
  • [50]Morgan D, Turnpenny L, Goodship J, Dai W, Majumder K, Matthews L, Gardner A, Schuster G, Vien L, Harrison W, Elder FF, Penman-Splitt M, Overbeek P, Strachan T: Inversin, a novel gene in the vertebrate left-right axis pathway, is partially deleted in the inv mouse. Nat Genet 1998, 20:149-156.
  • [51]Mochizuki T, Saijoh Y, Tsuchiya K, Shirayoshi Y, Takai S, Taya C, Yonekawa H, Yamada K, Nihei H, Nakatsuji N, Overbeek PA, Hamada H, Yokoyama T: Cloning of inv, a gene that controls left/right asymmetry and kidney development. Nature 1998, 395:177-181.
  • [52]Nonaka S, Tanaka Y, Okada Y, Takeda S, Harada A, Kanai Y, Kido M, Hirokawa N: Randomization of left-right asymmetry due to loss of nodal cilia generating leftward flow of extraembryonic fluid in mice lacking KIF3B motor protein. Cell 1998, 95:829-837.
  • [53]Chen J, Knowles HJ, Hebert JL, Hackett BP: Mutation of the mouse hepatocyte nuclear factor/forkhead homologue 4 gene results in an absence of cilia and random left-right asymmetry. J Clin Invest 1998, 102:1077-1082.
  • [54]Afzelius BA: Asymmetry of cilia and of mice and men. Int J Dev Biol 1999, 43:283-286.
  • [55]Schweickert A, Weber T, Beyer T, Vick P, Bogusch S, Feistel K, Blum M: Cilia-driven leftward flow determines laterality in Xenopus. Curr Biol 2007, 17:60-66.
  • [56]Shinohara K, Kawasumi A, Takamatsu A, Yoshiba S, Botilde Y, Motoyama N, Reith W, Durand B, Shiratori H, Hamada H: Two rotating cilia in the node cavity are sufficient to break left-right symmetry in the mouse embryo. Nat Commun 2012, 3:622.
  • [57]Marszalek JR, Ruiz-Lozano P, Roberts E, Chien KR, Goldstein LS: Situs inversus and embryonic ciliary morphogenesis defects in mouse mutants lacking the KIF3A subunit of kinesin-II. Proc Natl Acad Sci U S A 1999, 96:5043-5048.
  • [58]Takeda S, Yonekawa Y, Tanaka Y, Okada Y, Nonaka S, Hirokawa N: Left-right asymmetry and kinesin superfamily protein KIF3A: new insights in determination of laterality and mesoderm induction by kif3A−/− mice analysis. J Cell Biol 1999, 145:825-836.
  • [59]Okada Y, Nonaka S, Tanaka Y, Saijoh Y, Hamada H, Hirokawa N: Abnormal nodal flow precedes situs inversus in iv and inv mice. Mol Cell 1999, 4:459-468.
  • [60]Nonaka S, Shiratori H, Saijoh Y, Hamada H: Determination of left-right patterning of the mouse embryo by artificial nodal flow. Nature 2002, 418:96-99.
  • [61]Supp DM, Potter SS, Brueckner M: Molecular motors: the driving force behind mammalian left-right development. Trends Cell Biol 2000, 10:41-45.
  • [62]Wagner MK, Yost HJ: Left-right development: the roles of nodal cilia. Curr Biol 2000, 10:R149-R151.
  • [63]Brueckner M: Cilia propel the embryo in the right direction. Am J Med Genet 2001, 101:339-344.
  • [64]Schneider H, Brueckner M: Of mice and men: dissecting the genetic pathway that controls left-right asymmetry in mice and humans. Am J Med Genet 2000, 97:258-270.
  • [65]Russell E, McFarland E: Cystic kindey, cy. Mouse Newslett 1977, 56:40.
  • [66]Davisson MT, Guay-Woodford LM, Harris HW, D’Eustachio P: The mouse polycystic kidney disease mutation (cpk) is located on proximal chromosome 12. Genomics 1991, 9:778-781.
  • [67]Nauta J, Ozawa Y, Sweeney WE Jr, Rutledge JC, Avner ED: Renal and biliary abnormalities in a new murine model of autosomal recessive polycystic kidney disease. Pediatr Nephrol 1993, 7:163-172.
  • [68]Takahashi H, Ueyama Y, Hibino T, Kuwahara Y, Suzuki S, Hioki K, Tamaoki N: A new mouse model of genetically transmitted polycystic kidney disease. J Urol 1986, 135:1280-1283.
  • [69]Takahashi H, Calvet JP, Dittemore-Hoover D, Yoshida K, Grantham JJ, Gattone VH 2nd: A hereditary model of slowly progressive polycystic kidney disease in the mouse. J Am Soc Nephrol 1991, 1:980-989.
  • [70]Atala A, Freeman MR, Mandell J, Beier DR: Juvenile cystic kidneys (jck): a new mouse mutation which causes polycystic kidneys. Kidney Int 1993, 43:1081-1085.
  • [71]Schieren G, Pey R, Bach J, Hafner M, Gretz N: Murine models of polycystic kidney disease. Nephrol Dial Transplant 1996, 11(Suppl 6):38-45.
  • [72]Moyer JH, Lee-Tischler MJ, Kwon HY, Schrick JJ, Avner ED, Sweeney WE, Godfrey VL, Cacheiro NL, Wilkinson JE, Woychik RP: Candidate gene associated with a mutation causing recessive polycystic kidney disease in mice. Science 1994, 264:1329-1333.
  • [73]Yoder BK, Richards WG, Sweeney WE, Wilkinson JE, Avener ED, Woychik RP: Insertional mutagenesis and molecular analysis of a new gene associated with polycystic kidney disease. Proc Assoc Am Physicians 1995, 107:314-323.
  • [74]Murcia NS, Richards WG, Yoder BK, Mucenski ML, Dunlap JR, Woychik RP: The Oak Ridge Polycystic Kidney (orpk) disease gene is required for left-right axis determination. Development 2000, 127:2347-2355.
  • [75]Wheatley D: Primary cilia in normal and pathological tissues. Pathobiology 1995, 63:222-238.
  • [76]Wheatley D, Wang A, Strugnell G: Expression of primary cilia in mammalian cells. Cell Biol Int 1996, 20:73-81.
  • [77]Andrews P, Porter K: A scanning electron microscopic study of the nephron. Am J Anat 1974, 140:81-115.
  • [78]Taulman PD, Haycraft CJ, Balkovetz DF, Yoder BK: Polaris, a protein involved in left-right axis patterning, localizes to basal bodies and cilia. Mol Biol Cell 2001, 12:589-599.
  • [79]Pazour GJ, Dickert BL, Vucica Y, Seeley ES, Rosenbaum JL, Witman GB, Cole DG: Chlamydomonas IFT88 and its mouse homologue, polycystic kidney disease gene tg737, are required for assembly of cilia and flagella. J Cell Biol 2000, 151:709-718.
  • [80]Qin H, Rosenbaum JL, Barr MM: An autosomal recessive polycystic kidney disease gene homolog is involved in intraflagellar transport in C. elegans ciliated sensory neurons. Curr Biol 2001, 11:457-461.
  • [81]Haycraft CJ, Swoboda P, Taulman PD, Thomas JH, Yoder BK: The C. elegans homolog of the murine cystic kidney disease gene Tg737 functions in a ciliogenic pathway and is disrupted in osm-5 mutant worms. Development 2001, 128:1493-1505.
  • [82]Barr MM, Sternberg PW: A polycystic kidney-disease gene homologue required for male mating behaviour in C. elegans. Nature 1999, 401:386-389.
  • [83]Barr MM, DeModena J, Braun D, Nguyen CQ, Hall DH, Sternberg PW: The Caenorhabditis elegans autosomal dominant polycystic kidney disease gene homologs lov-1 and pkd-2 act in the same pathway. Curr Biol 2001, 11:1341-1346.
  • [84](1994) The polycystic kidney disease 1 gene encodes a 14 kb transcript and lies within a duplicated region on chromosome 16. The European Polycystic Kidney Disease Consortium. Cell 77:881–894
  • [85](1994) The polycystic kidney disease 1 gene encodes a 14 kb transcript and lies within a duplicated region on chromosome 16. The European Polycystic Kidney Disease Consortium. Cell 78:725
  • [86](1995) Polycystic kidney disease: the complete structure of the PKD1 gene and its protein. The International Polycystic Kidney Disease Consortium. Cell 81:289–298
  • [87]Hughes J, Ward CJ, Peral B, Aspinwall R, Clark K, San Millan JL, Gamble V, Harris PC: The polycystic kidney disease 1 (PKD1) gene encodes a novel protein with multiple cell recognition domains. Nat Genet 1995, 10:151-160.
  • [88]Mochizuki T, Wu G, Hayashi T, Xenophontos SL, Veldhuisen B, Saris JJ, Reynolds DM, Cai Y, Gabow PA, Pierides A, Kimberling WJ, Breuning MH, Deltas CC, Peters DJ, Somlo S: PKD2, a gene for polycystic kidney disease that encodes an integral membrane protein. Science 1996, 272:1339-1342.
  • [89]Pazour GJ, San Agustin JT, Follit JA, Rosenbaum JL, Witman GB: Polycystin-2 localizes to kidney cilia and the ciliary level is elevated in orpk mice with polycystic kidney disease. Curr Biol 2002, 12:R378-R380.
  • [90]Yoder BK, Hou X, Guay-Woodford LM: The polycystic kidney disease proteins, polycystin-1, polycystin-2, polaris, and cystin, are co-localized in renal cilia. J Am Soc Nephrol 2002, 13:2508-2516.
  • [91]Wu G, D’Agati V, Cai Y, Markowitz G, Park JH, Reynolds DM, Maeda Y, Le TC, Hou H Jr, Kucherlapati R, Edelmann W, Somlo S: Somatic inactivation of Pkd2 results in polycystic kidney disease. Cell 1998, 93:177-188.
  • [92]Wu G, Markowitz GS, Li L, D’Agati VD, Factor SM, Geng L, Tibara S, Tuchman J, Cai Y, Park JH, van Adelsberg J, Hou H Jr, Kucherlapati R, Edelmann W, Somlo S: Cardiac defects and renal failure in mice with targeted mutations in Pkd2. Nat Genet 2000, 24:75-78.
  • [93]Pennekamp P, Karcher C, Fischer A, Schweickert A, Skryabin B, Horst J, Blum M, Dworniczak B: The ion channel polycystin-2 is required for left-right axis determination in mice. Curr Biol 2002, 12:938-943.
  • [94]Hanaoka K, Qian F, Boletta A, Bhunia AK, Piontek K, Tsiokas L, Sukhatme VP, Guggino WB, Germino GG: Co-assembly of polycystin-1 and −2 produces unique cation-permeable currents. Nature 2000, 408:990-994.
  • [95]Gonzalez-Perrett S, Kim K, Ibarra C, Damiano AE, Zotta E, Batelli M, Harris PC, Reisin IL, Arnaout MA, Cantiello HF: Polycystin-2, the protein mutated in autosomal dominant polycystic kidney disease (ADPKD), is a Ca2 + −permeable nonselective cation channel. Proc Natl Acad Sci U S A 2001, 98:1182-1187.
  • [96]Koulen P, Cai Y, Geng L, Maeda Y, Nishimura S, Witzgall R, Ehrlich BE, Somlo S: Polycystin-2 is an intracellular calcium release channel. Nat Cell Biol 2002, 4:191-197.
  • [97]Olbrich H, Haffner K, Kispert A, Volkel A, Volz A, Sasmaz G, Reinhardt R, Hennig S, Lehrach H, Konietzko N, Zariwala M, Noone PG, Knowles M, Mitchison HM, Meeks M, Chung EM, Hildebrandt F, Sudbrak R, Omran H: Mutations in DNAH5 cause primary ciliary dyskinesia and randomization of left-right asymmetry. Nat Genet 2002, 30:143-144.
  • [98]Nauli SM, Alenghat FJ, Luo Y, Williams E, Vassilev P, Li X, Elia AE, Lu W, Brown EM, Quinn SJ, Ingber DE, Zhou J: Polycystins 1 and 2 mediate mechanosensation in the primary cilium of kidney cells. Nat Genet 2003, 33:129-137.
  • [99]Tabin CJ, Vogan KJ: A two-cilia model for vertebrate left-right axis specification. Genes Dev 2003, 17:1-6.
  • [100]McGrath J, Brueckner M: Cilia are at the heart of vertebrate left-right asymmetry. Curr Opin Genet Dev 2003, 13:385-392.
  • [101]Nauli SM, Zhou J: Polycystins and mechanosensation in renal and nodal cilia. Bioessays 2004, 26:844-856.
  • [102]Yost HJ: Left-right asymmetry: nodal cilia make and catch a wave. Curr Biol 2003, 13:R808-R809.
  • [103]Basu B, Brueckner M: Cilia multifunctional organelles at the center of vertebrate left-right asymmetry. Curr Top Dev Biol 2008, 85:151-174.
  • [104]Cartwright JH, Piro O, Tuval I: Fluid-dynamical basis of the embryonic development of left-right asymmetry in vertebrates. Proc Natl Acad Sci U S A 2004, 101:7234-7239.
  • [105]Okada Y, Takeda S, Tanaka Y, Izpisua Belmonte JC, Hirokawa N: Mechanism of nodal flow: a conserved symmetry breaking event in left-right axis determination. Cell 2005, 121:633-644.
  • [106]Nonaka S, Yoshiba S, Watanabe D, Ikeuchi S, Goto T, Marshall WF, Hamada H: De novo formation of left-right asymmetry by posterior tilt of nodal cilia. PLoS Biol 2005, 3:e268.
  • [107]Guay-Woodford LM, Bryda EC, Christine B, Lindsey JR, Collier WR, Avner ED, D’Eustachio P, Flaherty L: Evidence that two phenotypically distinct mouse PKD mutations, bpk and jcpk, are allelic. Kidney Int 1996, 50:1158-1165.
  • [108]Cogswell C, Price SJ, Hou X, Guay-Woodford LM, Flaherty L, Bryda EC: Positional cloning of jcpk/bpk locus of the mouse. Mamm Genome 2003, 14:242-249.
  • [109]Maisonneuve C, Guilleret I, Vick P, Weber T, Andre P, Beyer T, Blum M, Constam DB: Bicaudal C, a novel regulator of Dvl signaling abutting RNA-processing bodies, controls cilia orientation and leftward flow. Development 2009, 136:3019-3030.
  • [110]Hashimoto M, Shinohara K, Wang J, Ikeuchi S, Yoshiba S, Meno C, Nonaka S, Takada S, Hatta K, Wynshaw-Boris A, Hamada H: Planar polarization of node cells determines the rotational axis of node cilia. Nat Cell Biol 2010, 12:170-176.
  • [111]Nakaya MA, Biris K, Tsukiyama T, Jaime S, Rawls JA, Yamaguchi TP: Wnt3a links left-right determination with segmentation and anteroposterior axis elongation. Development 2005, 132:5425-5436.
  • [112]Song H, Hu J, Chen W, Elliott G, Andre P, Gao B, Yang Y: Planar cell polarity breaks bilateral symmetry by controlling ciliary positioning. Nature 2010, 466:378-382.
  • [113]Mahaffey JP, Grego-Bessa J, Liem KF Jr, Anderson KV: Cofilin and Vangl2 cooperate in the initiation of planar cell polarity in the mouse embryo. Development 2013, 140:1262-1271.
  • [114]Wallingford JB: Planar cell polarity signaling, cilia and polarized ciliary beating. Curr Opin Cell Biol 2010, 22:597-604.
  • [115]Hashimoto M, Hamada H: Translation of anterior-posterior polarity into left-right polarity in the mouse embryo. Curr Opin Genet Dev 2010, 20:433-437.
  • [116]Farnum CE, Wilsman NJ: Axonemal positioning and orientation in three-dimensional space for primary cilia: what is known, what is assumed, and what needs clarification. Dev Dyn 2011, 240:2405-2431.
  • [117]Schweickert A, Vick P, Getwan M, Weber T, Schneider I, Eberhardt M, Beyer T, Pachur A, Blum M: The nodal inhibitor Coco is a critical target of leftward flow in Xenopus. Curr Biol 2010, 20:738-743.
  • [118]Yoshiba S, Shiratori H, Kuo IY, Kawasumi A, Shinohara K, Nonaka S, Asai Y, Sasaki G, Belo JA, Sasaki H, Nakai J, Dworniczak B, Ehrlich BE, Pennekamp P, Hamada H: Cilia at the node of mouse embryos sense fluid flow for left-right determination via Pkd2. Science 2012, 338:226-231.
  • [119]Babu D, Roy S: Left-right asymmetry: cilia stir up new surprises in the node. Open Biol 2013, 3:130052.
  • [120]Yoshiba S, Hamada H: Roles of cilia, fluid flow, and Ca2+ signaling in breaking of left-right symmetry. Trends Genet 2014, 30:10-17.
  • [121]Fakhro KA, Choi M, Ware SM, Belmont JW, Towbin JA, Lifton RP, Khokha MK, Brueckner M: Rare copy number variations in congenital heart disease patients identify unique genes in left-right patterning. Proc Natl Acad Sci U S A 2011, 108:2915-2920.
  • [122]Boskovski MT, Yuan S, Pedersen NB, Goth CK, Makova S, Clausen H, Brueckner M, Khokha MK: The heterotaxy gene GALNT11 glycosylates Notch to orchestrate cilia type and laterality. Nature 2013, 504:456-459.
  • [123]Shiratori H, Hamada H: The left-right axis in the mouse: from origin to morphology. Development 2006, 133:2095-2104.
  • [124]Lee JD, Anderson KV: Morphogenesis of the node and notochord: the cellular basis for the establishment and maintenance of left-right asymmetry in the mouse. Dev Dyn 2008, 237:3464-3476.
  • [125]Fliegauf M, Benzing T, Omran H: When cilia go bad: cilia defects and ciliopathies. Nat Rev Mol Cell Biol 2007, 8:880-893.
  • [126]Komatsu Y, Mishina Y: Establishment of left-right asymmetry in vertebrate development: the node in mouse embryos. Cell Mol Life Sci 2013, 70:4659-4666.
  • [127]Nakamura T, Hamada H: Left-right patterning: conserved and divergent mechanisms. Development 2012, 139:3257-3262.
  • [128]Saijoh Y, Viotti M, Hadjantonakis AK: Follow your gut: relaying information from the site of left-right symmetry breaking in the mouse. Genesis 2014, 52:503-514.
  • [129]Shiratori H, Hamada H: TGFbeta signaling in establishing left-right asymmetry. Semin Cell Dev Biol 2014, 32C:80-84.
  • [130]Choksi SP, Lauter G, Swoboda P, Roy S: Switching on cilia: transcriptional networks regulating ciliogenesis. Development 2014, 141:1427-1441.
  • [131]Ibanez-Tallon I, Heintz N, Omran H (2003) To beat or not to beat: roles of cilia in development and disease. Hum Mol Genet 12 Spec No 1:R27–R35
  • [132]Caspary T, Larkins CE, Anderson KV: The graded response to Sonic Hedgehog depends on cilia architecture. Dev Cell 2007, 12:767-778.
  • [133]Alten L, Schuster-Gossler K, Beckers A, Groos S, Ulmer B, Hegermann J, Ochs M, Gossler A: Differential regulation of node formation, nodal ciliogenesis and cilia positioning by Noto and Foxj1. Development 2012, 139:1276-1284.
  • [134]Beckers A, Alten L, Viebahn C, Andre P, Gossler A: The mouse homeobox gene Noto regulates node morphogenesis, notochordal ciliogenesis, and left right patterning. Proc Natl Acad Sci U S A 2007, 104:15765-15770.
  • [135]Kinzel D, Boldt K, Davis EE, Burtscher I, Trumbach D, Diplas B, Attie-Bitach T, Wurst W, Katsanis N, Ueffing M, Lickert H: Pitchfork regulates primary cilia disassembly and left-right asymmetry. Dev Cell 2010, 19:66-77.
  • [136]Feistel K, Blum M: Three types of cilia including a novel 9 + 4 axoneme on the notochordal plate of the rabbit embryo. Dev Dyn 2006, 235:3348-3358.
  • [137]Kramer-Zucker AG, Olale F, Haycraft CJ, Yoder BK, Schier AF, Drummond IA: Cilia-driven fluid flow in the zebrafish pronephros, brain and Kupffer’s vesicle is required for normal organogenesis. Development 2005, 132:1907-1921.
  • [138]Kreiling JA, Prabhat WG, Creton R: Analysis of Kupffer’s vesicle in zebrafish embryos using a cave automated virtual environment. Dev Dyn 2007, 236:1963-1969.
  • [139]Wilson CW, Nguyen CT, Chen MH, Yang JH, Gacayan R, Huang J, Chen JN, Chuang PT: Fused has evolved divergent roles in vertebrate Hedgehog signalling and motile ciliogenesis. Nature 2009, 459:98-102.
  • [140]Ferrante MI, Romio L, Castro S, Collins JE, Goulding DA, Stemple DL, Woolf AS, Wilson SW: Convergent extension movements and ciliary function are mediated by ofd1, a zebrafish orthologue of the human oral-facial-digital type 1 syndrome gene. Hum Mol Genet 2009, 18:289-303.
  • [141]Omran H, Kobayashi D, Olbrich H, Tsukahara T, Loges NT, Hagiwara H, Zhang Q, Leblond G, O’Toole E, Hara C, Mizuno H, Kawano H, Fliegauf M, Yagi T, Koshida S, Miyawaki A, Zentgraf H, Seithe H, Reinhardt R, Watanabe Y, Kamiya R, Mitchell DR, Takeda H: Ktu/PF13 is required for cytoplasmic pre-assembly of axonemal dyneins. Nature 2008, 456:611-616.
  • [142]Kobayashi D, Iijima N, Hagiwara H, Kamura K, Takeda H, Yokoyama T: Characterization of the medaka (Oryzias latipes) primary ciliary dyskinesia mutant, jaodori: redundant and distinct roles of dynein axonemal intermediate chain 2 (dnai2) in motile cilia. Dev Biol 2010, 347:62-70.
  • [143]Satir P (1995) Landmarks in cilia research from Leeuwenhoek to us. Cell Motil Cytoskeleton 32(2):90–94, Erratum in: Cell Motil Cytoskeleton 1999;42(1):82
  • [144]Bloodgood RA: From central to rudimentary to primary: the history of an underappreciated organelle whose time has come. The primary cilium. Methods Cell Biol 2009, 94:3-52.
  文献评价指标  
  下载次数:18次 浏览次数:59次