期刊论文详细信息
Journal of Biological Engineering
Half-life measurements of chemical inducers for recombinant gene expression
Paolo Magni2  Maria Gabriella Cusella De Angelis2  Giuseppina Micoli1  Michela Casanova2  Susanna Zucca2  Lorenzo Pasotti2  Nicolo’ Politi2 
[1] Centro di Ricerche Ambientali, IRCCS Fondazione Salvatore Maugeri, via Salvatore Maugeri 10, Pavia, Italy;Centro di Ingegneria Tissutale, Università degli Studi di Pavia, via Ferrata 3, Pavia, Italy
关键词: HSL;    ATc;    IPTG;    BioBrick™;    Whole-cell biosensors;    Synthetic biology;    Chemical inducers;    Degradation rate;   
Others  :  804813
DOI  :  10.1186/1754-1611-8-5
 received in 2013-07-25, accepted in 2014-01-11,  发布年份 2014
PDF
【 摘 要 】

Background

Inducible promoters are widely spread genetic tools for triggering, tuning and optimizing the expression of recombinant genes in engineered biological systems. Most of them are controlled by the addition of a specific exogenous chemical inducer that indirectly regulates the promoter transcription rate in a concentration-dependent fashion. In order to have a robust and predictable degree of control on promoter activity, the degradation rate of such chemicals should be considered in many applications like recombinant protein production.

Results

In this work, we use whole-cell biosensors to assess the half-life of three commonly used chemical inducers for recombinant Escherichia coli: Isopropyl β-D-1-thiogalactopyranoside (IPTG), anhydrotetracycline (ATc) and N-(3-oxohexanoyl)-L-homoserine lactone (HSL). A factorial study was conducted to investigate the conditions that significantly contribute to the decay rate of these inducers. Temperature has been found to be the major factor affecting ATc, while medium and pH have been found to highly affect HSL. Finally, no significant degradation was observed for IPTG among the tested conditions.

Conclusions

We have quantified the decay rate of IPTG, ATc and HSL in many conditions, some of which were not previously tested in the literature, and the main effects affecting their degradation were identified via a statistics-based framework. Whole-cell biosensors were successfully used to conduct this study, yielding reproducible measurements via simple multiwell-compatible assays. The knowledge of inducer degradation rate in several contexts has to be considered in the rational design of synthetic biological systems for improving the predictability of induction effects, especially for prolonged experiments.

【 授权许可】

   
2014 Politi et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20140708065712874.pdf 734KB PDF download
Figure 4. 55KB Image download
Figure 3. 47KB Image download
Figure 2. 50KB Image download
Figure 1. 82KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

【 参考文献 】
  • [1]Lutz R, Bujard H: Independent and tight regulation of transcriptional units in Escherichia coli via the LacR/O, the TetR/O and AraC/I1-I2 regulatory elements. Nucleic Acids Res 1997, 25(6):1203-1210.
  • [2]Cox RS 3rd, Surette MG, Elowitz MB: Programming gene expression with combinatorial promoters. Mol Syst Biol 2007, 3:145.
  • [3]Gardner TS, Cantor CR, Collins JJ: Construction of a genetic toggle switch in Escherichia coli. Nature 2000, 403:339-342.
  • [4]Pasotti L, Zucca S, Lupotto M, Cusella De Angelis M, Magni P: Characterization of a synthetic bacterial self-destruction device for programmed cell death and for recombinant proteins release. J Biol Eng 2011, 5:8. BioMed Central Full Text
  • [5]Kamionka A, Bertram R, Hillen W: Tetracycline-dependent conditional gene knockout in bacillus subtilis. Appl Environ Microbiol 2005, 71(2):728-733.
  • [6]Andersen JB, Sternberg C, Poulsen LK, Bjorn SP, Givskov M, Molin S: New unstable variants of green fluorescent protein for studies of transient gene expression in bacteria. Appl Environ Microbiol 1998, 64(6):2240-2246.
  • [7]Canton B, Labno A, Endy D: Refinement and standardization of synthetic biological parts and devices. Nat Biotechnol 2008, 26:787-793.
  • [8]Ellis T, Wang X, Collins JJ: Diversity-based, model-guided construction of synthetic gene networks with predicted functions. Nat Biotechnol 2009, 27:465-471.
  • [9]Blount BA, Weenink T, Vasylechko S, Ellis T: Rational diversification of a promoter providing fine-tuned expression and orthogonal regulation for synthetic biology. PLoS ONE 2012, 7(3):e33279.
  • [10]Gossen M, Bujard H: Anhydrotetracycline, a novel effector for tetracycline controlled gene expression systems in eukaryotic cells. Nucleic Acids Res 1993, 21(18):4411-4412.
  • [11]Stricker J, Cookson S, Bennett MR, Mather WH, Tsimring LS, Hasty J: A fast, robust and tunable synthetic gene oscillator. Nature 2008, 456(7221):516-519.
  • [12]Moon TS, Lou C, Tamsir A, Stanton BC, Voigt CA: Genetic programs constructed from layered logic gates in single cells. Nature 2012, 491(7423):249-253.
  • [13]Temme K, Zhao D, Voigt CA: Refactoring the nitrogen fixation gene cluster from Klebsiella oxytoca. Proc Natl Acad Sci 2012, 109(18):7085-7090.
  • [14]Jana S, Deb JK: Strategies for efficient production of heterologous proteins in Escherichia coli. Appl Microbiol Biotechnol 2005, 67(3):289-298.
  • [15]Steindler L, Venturi V: Detection of quorum-sensing N-acyl homoserine lactone signal molecules by bacterial biosensors. FEMS Microbiol Lett 2007, 266(1):1-9.
  • [16]Fernandez-Castane A, Ruiz J, Caminal G, Lopez-Santin J: Development and validation of a liquid chromatography-mass spectrometry assay for the quantitation of IPTG in E. Coli fed-batch cultures. Anal Chem 2010, 82:5728-5734.
  • [17]Gould TA, Herman J, Krank J, Murphy RC, Churchill MEA: Specificity of acyl-homoserine lactone synthases examined by mass spectrometry. J Bacteriol 2006, 188:773-783.
  • [18]Sigma Aldrich: Datasheets of products I5502 and I6758. [http://www.sigmaaldrich.com/content/dam/sigma-aldrich/docs/Sigma-Aldrich/Product_Information_Sheet/i5502pis.pdf webcite]
  • [19]Fernandez-Castane A, Vine CE, Caminal G, Lopez-Santin J: Evidencing the role of lactose permease in IPTG uptake by Escherichia coli in fed-batch high cell density cultures. J Biotechnol 2011, 157:391-398.
  • [20]Fernandez-Castane A, Caminal G, Lopez-Santin J: Direct measurements of IPTG enable analysis of the induction behavior of E. coli in high cell density cultures. Microb Cell Fact 2012, 11:58. BioMed Central Full Text
  • [21]Biliouris K, Daoutidis P, Kaznessis YN: Stochastic simulations of the tetracycline operon. BMC Syst Biol 2011, 5:9. BioMed Central Full Text
  • [22]Yates EA, Philipp B, Buckley C, Steve A, Chhabra SR, Sockett RE, Goldner M, Dessaux Y, Camara M, Smith H, Williams P: N-acylhomoserine lactones undergo lactonolysis in a pH-, temperature-, and acyl chain length-dependent manner during growth of Yersinia pseudotuberculosis and Pseudomonas aeruginosa. Infect Immun 2002, 70(10):5635-5646.
  • [23]Schaefer AL, Hanzelka BL, Parsek MR, Greenberg EP: Detection, purification, and structural elucidation of the acylhomoserine lactone inducer of Vibrio fischeri luminescence and other related molecules. Methods Enzymol 2000, 305:288-301.
  • [24]Wang LH, Weng LX, Dong YH, Zhang LH: Specificity and enzyme kinetics of the quorum-quenching N-acyl homoserine lactone lactonase (AHL-lactonase). J Biol Chem 2004, 279(14):13645-13651.
  • [25]Dong YH, Wang LH, Xu JL, Zhang HB, Zhang XF, Zhang LH: Quenching quorum-sensing-dependent bacterial infection by anN-acyl homoserine lactonase. Nature 2001, 411:813-817.
  • [26]Leadbetter JR, Greenberg EP: Metabolism of acyl-homoserine lactone quorum-sensing signals by Variovorax paradoxus. J Bacteriol 2000, 182:6921-6926.
  • [27]Kelly J: The organism is the product. ACS Synth Biol 2012, 1(1):4-5.
  • [28]Sambrook J, Fritsch EF, Maniatis T: Molecular cloning: a laboratory manual. Cold Spring Harbor, N.Y.: Cold Spring Harbor Laboratory Press; 1989.
  • [29]MIT: Registry of standard biological parts. [http://partsregistry.org webcite]
  • [30]Knight TF: Idempotent vector design for standard assembly of biobricks. Technical report, MIT DSpace. 2003. [http://web.mit.edu/synbio/release/docs/biobricks.pdf webcite]
  • [31]Sleight SC, Bartley BA, Lieviant JA, Sauro HM: Designing and engineering evolutionary robust genetic circuits. J Biol Eng 2010, 4:12. BioMed Central Full Text
  • [32]Bernard P, Couturier M: Cell killing by the F plasmid CcdB protein involves poisoning of DNA-topoisomerase II complexes. J Mol Biol 1992, 226(3):735-745.
  • [33]Miki T, Park JA, Nagao K, Murayama N, Horiuchi T: Control of segregation of chromosomal DNA by sex factor F in Escherichia coli. Mutants of DNA gyrase subunit A suppress letD (ccdB) product growth inhibition. J Mol Biol 1992, 225:39-52.
  • [34]Durfee T, Nelson R, Baldwin S, Plunkett G, Burland V, Mau B, Petrosino JF, Qin X, Muzny DM, Ayele M, Gibbs RA, Csorgo B, Posfai G, Weinstock GM, Blattner FR: The complete genome sequence of Escherichia coli DH10B: insights into the biology of a laboratory workhorse. J Bacteriol 2008, 190:2597-2606.
  • [35]Pasotti L, Quattrocelli M, Galli D, Cusella De Angelis MG, Magni P: Multiplexing and demultiplexing logic functions for computing signal processing tasks in synthetic biology. Biotechnol J 2011, 6(7):784-795.
  • [36]Zucca S, Pasotti L, Mazzini G, Cusella De Angelis MG, Magni P: Characterization of an inducible promoter in different DNA copy number conditions. BMC Bioinforma 2012, 13:S11.
  • [37]Tsuji K, Goetz JF: HPLC as a rapid means of monitoring erythromycin and tetracycline fermentation processes. J Antibiot 1978, 31:302-308.
  • [38]Pasotti L, Politi N, Zucca S, Cusella De Angelis MG, Magni P: Bottom-up engineering of biological systems through standard bricks: a modularity study on basic parts and devices. PLoS One 2012, 7:e39407.
  • [39]Batt G, Yordanov B, Weiss R, Belta C: Robustness analysis and tuning of synthetic gene networks. Bioinformatics 2007, 23(18):2415-2422.
  文献评价指标  
  下载次数:26次 浏览次数:131次