期刊论文详细信息
Journal of Biomedical Science
Aberrant gene expression profiles, during in vitro osteoblast differentiation, of telomerase deficient mouse bone marrow stromal stem cells (mBMSCs)
Mehwish Iqtedar2  Hamid Saeed1 
[1]University College of Pharmacy, Punjab University, Allama Iqbal Campus, Lahore, 54000, Pakistan
[2]Department of Bio-technology & Microbiology, Lahore College for Women University, Lahore, Pakistan
关键词: Osteoblast;    Aging;    Mesenchymal stem cells;    BMSCs;    Telomeres;    Telomerase;   
Others  :  1133558
DOI  :  10.1186/s12929-015-0116-4
 received in 2014-06-13, accepted in 2015-01-21,  发布年份 2015
PDF
【 摘 要 】

Background

Telomerase deficiency has been associated with inadequate differentiation of mesenchymal stem cells. However, the effect of telomerase deficiency on differential regulation of osteoblast specific genes, based on functional gene grouping, during in vitro osteoblast differentiation has not been reported before.

Results

To examine these effects, Terc-/- BMSCs (bone marrow stromal stem cells) were employed which exhibited reduced proliferation during in vitro osteogenesis along with increased population doubling time and level compared to wild type (WT) BMSCs during the normal culture. Osteogenic super array at day 10 of osteoblast differentiation revealed that telomerase deficiency strongly affected the osteoblast commitment by down-regulating Runx2, Twist and Vdr – known transcription regulators of osteogenesis. Similarly, in Terc-/- BMSCs a marked reduction in other genes engaged in various phases of osteoblast differentiation were observed, such as Fgfr2 involved in bone mineralization, Phex and Dmp1 engaged in ossification, and Col11a1 and Col2a1 involved in cartilage condensation. A similar trend was observed for genes involved in osteoblast proliferation (Tgfb1, Fgfr2 and Pdgfa) and bone mineral metabolism (Col1a1, Col2a1, Col1a2 and Col11a1). More profound changes were observed in genes engaged in extracellular matrix production: Col1a1, Col1a2, Mmp10, Serpinh1 and Col4a1.

Conclusion

Taken together, these data suggest that telomerase deficiency causes impairment of BMSCs differentiation into osteoblasts affecting commitment, proliferation, matrix mineralization and maturation. Thus, modulating telomerase in BMSCs with advanced aging could improve BMSCs responsiveness towards osteoblast differentiation signals, optimal for osteoblast commitment, proliferation and maturation processes.

【 授权许可】

   
2015 Saeed and Iqtedar; licensee BioMed Central.

【 预 览 】
附件列表
Files Size Format View
20150304162514902.pdf 3002KB PDF download
Figure 5. 45KB Image download
Figure 4. 43KB Image download
Figure 3. 46KB Image download
Figure 2. 48KB Image download
Figure 1. 83KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

【 参考文献 】
  • [1]Pietschmann P, Rauner M, Sipos W, Kerschan-Schindl K: Osteoporosis: an age-related and gender-specific disease–a mini-review. Gerontol 2009, 55:3-12.
  • [2]Seeman E: Bone quality: the material and structural basis of bone strength. J Bone Miner Metab 2008, 26:1-8.
  • [3]Manolagas SC: Birth and death of bone cells: basic regulatory mechanisms and implications for the pathogenesis and treatment of osteoporosis. Endocr Rev 2000, 21:115-37.
  • [4]Benisch P, Schilling T, Klein-Hitpass L, Frey SP, Seefried L, Raaijmakers N, et al.: The transcriptional profile of mesenchymal stem cell populations in primary osteoporosis is distinct and shows overexpression of osteogenic inhibitors. PLoS One 2012, 7:e45142.
  • [5]Pittenger MF, Mackay AM, Beck SC, Jaiswal RK, Douglas R, Mosca JD, et al.: Multilineage potential of adult human mesenchymal stem cells. Science 1999, 284:143-7.
  • [6]Fibbe WE: Mesenchymal stem cells. A potential source for skeletal repair. Ann Rheum Dis 2002, 61(2):ii29-31.
  • [7]Rando TA: Stem cells, ageing and the quest for immortality. Nature 2006, 441:1080-6.
  • [8]Weissman IL: Stem cells: units of development, units of regeneration, and units in evolution. Cell 2000, 100:157-68.
  • [9]Artegiani B, Calegari F: Age-related cognitive decline: can neural stem cells help us? Aging (Albany NY) 2012, 4:176-86.
  • [10]Bergman RJ, Gazit D, Kahn AJ, Gruber H, McDougall S, Hahn TJ: Age-related changes in osteogenic stem cells in mice. J Bone Miner Res 1996, 11:568-77.
  • [11]D’Ippolito G, Schiller PC, Ricordi C, Roos BA, Howard GA: Age-related osteogenic potential of mesenchymal stromal stem cells from human vertebral bone marrow. J Bone Miner Res 1999, 14:1115-22.
  • [12]Saeed H, Abdallah BM, Ditzel N, Catala-Lehnen P, Qiu W, Amling M, et al.: Telomerase-deficient mice exhibit bone loss owing to defects in osteoblasts and increased osteoclastogenesis by inflammatory microenvironment. J Bone Miner Res 2011, 26:1494-505.
  • [13]Greider CW, Blackburn EH: Identification of a specific telomere terminal transferase activity in Tetrahymena extracts. Cell 1985, 43:405-13.
  • [14]Blackburn EH, Chiou SS: Non-nucleosomal packaging of a tandemly repeated DNA sequence at termini of extrachromosomal DNA coding for rRNA in Tetrahymena. Proc Natl Acad Sci U S A 1981, 78:2263-7.
  • [15]Blackburn EH, Gall JG: A tandemly repeated sequence at the termini of the extrachromosomal ribosomal RNA genes in Tetrahymena. J Mol Biol 1978, 120:33-53.
  • [16]Blackburn EH: Telomeres: do the ends justify the means? Cell 1984, 37:7-8.
  • [17]Kassem M, Abdallah BM, Yu Z, Ditzel N, Burns JS: The use of hTERT-immortalized cells in tissue engineering. Cytotechnology 2004, 45:39-46.
  • [18]Blasco MA: Telomeres and human disease: ageing, cancer and beyond. Nat Rev Genet 2005, 6:611-22.
  • [19]Ju Z, Jiang H, Jaworski M, Rathinam C, Gompf A, Klein C, et al.: Telomere dysfunction induces environmental alterations limiting hematopoietic stem cell function and engraftment. Nat Med 2007, 13:742-7.
  • [20]Lee HW, Blasco MA, Gottlieb GJ, Horner JW, Greider CW, DePinho RA: Essential role of mouse telomerase in highly proliferative organs. Nature 1998, 392:569-74.
  • [21]Vulliamy T, Marrone A, Dokal I, Mason PJ: Association between aplastic anaemia and mutations in telomerase RNA. Lancet 2002, 359:2168-70.
  • [22]Fan M, Chen W, Liu W, Du GQ, Jiang SL, Tian WC, et al.: The effect of age on the efficacy of human mesenchymal stem cell transplantation after a myocardial infarction. Rejuvenation Res 2010, 13:429-38.
  • [23]Zhang H, Fazel S, Tian H, Mickle DA, Weisel RD, Fujii T, et al.: Increasing donor age adversely impacts beneficial effects of bone marrow but not smooth muscle myocardial cell therapy. Am J Physiol Heart Circ Physiol 2005, 289:H2089-96.
  • [24]Peister A, Mellad JA, Larson BL, Hall BM, Gibson LF, Prockop DJ: Adult stem cells from bone marrow (MSCs) isolated from different strains of inbred mice vary in surface epitopes, rates of proliferation, and differentiation potential. Blood 2004, 103:1662-8.
  • [25]Post S, Abdallah BM, Bentzon JF, Kassem M: Demonstration of the presence of independent pre-osteoblastic and pre-adipocytic cell populations in bone marrow-derived mesenchymal stem cells. Bone 2008, 43:32-9.
  • [26]Gouttenoire J, Valcourt U, Bougault C, Aubert-Foucher E, Arnaud E, Giraud L, et al.: Knockdown of the intraflagellar transport protein IFT46 stimulates selective gene expression in mouse chondrocytes and affects early development in zebrafish. J Biol Chem 2007, 282:30960-73.
  • [27]Xue Y, Xing Z, Hellem S, Arvidson K, Mustafa K: Endothelial cells influence the osteogenic potential of bone marrow stromal cells. Biomed Eng Online 2009, 8:34. BioMed Central Full Text
  • [28]Liu L, DiGirolamo CM, Navarro PA, Blasco MA, Keefe DL: Telomerase deficiency impairs differentiation of mesenchymal stem cells. Exp Cell Res 2004, 294:1-8.
  • [29]Simonsen JL, Rosada C, Serakinci N, Justesen J, Stenderup K, Rattan SI, et al.: Telomerase expression extends the proliferative life-span and maintains the osteogenic potential of human bone marrow stromal cells. Nat Biotechnol 2002, 20:592-6.
  • [30]Hughes FJ, Turner W, Belibasakis G, Martuscelli G: Effects of growth factors and cytokines on osteoblast differentiation. Periodontol 2000 2006, 41:48-72.
  • [31]Stein GS, Lian JB, Stein JL, van Wijnen AJ, Montecino M: Transcriptional control of osteoblast growth and differentiation. Physiol Rev 1996, 76:593-629.
  • [32]Han J, Ishii M, Bringas P Jr, Maas RL, Maxson RE Jr, Chai Y: Concerted action of Msx1 and Msx2 in regulating cranial neural crest cell differentiation during frontal bone development. Mech Dev 2007, 124:729-45.
  • [33]Aberg T, Wang XP, Kim JH, Yamashiro T, Bei M, Rice R, et al.: Runx2 mediates FGF signaling from epithelium to mesenchyme during tooth morphogenesis. Dev Biol 2004, 270:76-93.
  • [34]Bialek P, Kern B, Yang X, Schrock M, Sosic D, Hong N, et al.: A twist code determines the onset of osteoblast differentiation. Dev Cell 2004, 6:423-35.
  • [35]Chen HM, Lin YH, Cheng YM, Wing LY, Tsai SJ: Overexpression of integrin-beta1 in leiomyoma promotes cell spreading and proliferation. J Clin Endocrinol Metab 2013, 98:E837-46.
  • [36]Kalajzic I, Braut A, Guo D, Jiang X, Kronenberg MS, Mina M, et al.: Dentin matrix protein 1 expression during osteoblastic differentiation, generation of an osteocyte GFP-transgene. Bone 2004, 35:74-82.
  • [37]Guenou H, Kaabeche K, Mee SL, Marie PJ: A role for fibroblast growth factor receptor-2 in the altered osteoblast phenotype induced by Twist haploinsufficiency in the Saethre-Chotzen syndrome. Hum Mol Genet 2005, 14:1429-39.
  • [38]Kahler RA, Yingst SM, Hoeppner LH, Jensen ED, Krawczak D, Oxford JT, et al.: Collagen 11a1 is indirectly activated by lymphocyte enhancer-binding factor 1 (Lef1) and negatively regulates osteoblast maturation. Matrix Biol 2008, 27:330-8.
  • [39]Alliston T, Choy L, Ducy P, Karsenty G, Derynck R: TGF-beta-induced repression of CBFA1 by Smad3 decreases cbfa1 and osteocalcin expression and inhibits osteoblast differentiation. EMBO J 2001, 20:2254-72.
  • [40]Spinella-Jaegle S, Roman-Roman S, Faucheu C, Dunn FW, Kawai S, Gallea S, et al.: Opposite effects of bone morphogenetic protein-2 and transforming growth factor-beta1 on osteoblast differentiation. Bone 2001, 29:323-30.
  • [41]Fang MA, Kujubu DA, Hahn TJ: The effects of prostaglandin E2, parathyroid hormone, and epidermal growth factor on mitogenesis, signaling, and primary response genes in UMR 106-01 osteoblast-like cells. Endocrinology 1992, 131:2113-9.
  • [42]Miraoui H, Oudina K, Petite H, Tanimoto Y, Moriyama K, Marie PJ: Fibroblast growth factor receptor 2 promotes osteogenic differentiation in mesenchymal cells via ERK1/2 and protein kinase C signaling. J Biol Chem 2009, 284:4897-904.
  • [43]Raucci A, Bellosta P, Grassi R, Basilico C, Mansukhani A: Osteoblast proliferation or differentiation is regulated by relative strengths of opposing signaling pathways. J Cell Physiol 2008, 215:442-51.
  • [44]Di BA, Watkins M, Grimston S, Salazar V, Donsante C, Mbalaviele G, et al.: N-cadherin and cadherin 11 modulate postnatal bone growth and osteoblast differentiation by distinct mechanisms. J Cell Sci 2010, 123:2640-8.
  • [45]Singhatanadgit W, Olsen I: Endogenous BMPR-IB signaling is required for early osteoblast differentiation of human bone cells. In Vitro Cell Dev Biol Anim 2011, 47:251-9.
  • [46]Wu YF, Matsuo N, Sumiyoshi H, Yoshioka H: Sp7/Osterix is involved in the up-regulation of the mouse pro-alpha1 (V) collagen gene (Col5a1) in osteoblastic cells. Matrix Biol 2010, 29:701-6.
  • [47]Mathews S, Bhonde R, Gupta PK, Totey S: Extracellular matrix protein mediated regulation of the osteoblast differentiation of bone marrow derived human mesenchymal stem cells. Differentiation 2012, 84:185-92.
  • [48]Mizuno M, Kuboki Y: Osteoblast-related gene expression of bone marrow cells during the osteoblastic differentiation induced by type I collagen. J Biochem 2001, 129:133-8.
  • [49]Peters MA, Wendholt D, Strietholt S, Frank S, Pundt N, Korb-Pap A, et al.: The loss of alpha2beta1 integrin suppresses joint inflammation and cartilage destruction in mouse models of rheumatoid arthritis. Arthritis Rheum 2012, 64:1359-68.
  • [50]Christiansen HE, Schwarze U, Pyott SM, AlSwaid A, Al BM, Alrasheed S, et al.: Homozygosity for a missense mutation in SERPINH1, which encodes the collagen chaperone protein HSP47, results in severe recessive osteogenesis imperfecta. Am J Hum Genet 2010, 86:389-98.
  • [51]Garcia S, Forteza J, Lopez-Otin C, Gomez-Reino JJ, Gonzalez A, Conde C: Matrix metalloproteinase-8 deficiency increases joint inflammation and bone erosion in the K/BxN serum-transfer arthritis model. Arthritis Res Ther 2010, 12:R224. BioMed Central Full Text
  • [52]Barksby HE, Milner JM, Patterson AM, Peake NJ, Hui W, Robson T, et al.: Matrix metalloproteinase 10 promotion of collagenolysis via procollagenase activation: implications for cartilage degradation in arthritis. Arthritis Rheum 2006, 54:3244-53.
  文献评价指标  
  下载次数:18次 浏览次数:24次