Journal of Neuroinflammation | |
Neuroinflammation in autism spectrum disorders | |
Laila Al-Ayadhi1  Afaf El-Ansary2  | |
[1] Department of Physiology, Faculty of Medicine, King Saud University, Riyadh, Saudi Arabia;Medicinal Chemistry Department, National Research Centre, Dokki, Cairo, Egypt | |
关键词: Caspase7; Interferon-γ; Transforming growth factor-β; Heat shock protein-70; Neuroinflammation; Autism; | |
Others : 1160128 DOI : 10.1186/1742-2094-9-265 |
|
received in 2012-10-13, accepted in 2012-11-28, 发布年份 2012 | |
【 摘 要 】
Objectives
The neurobiological basis for autism remains poorly understood. However, research suggests that environmentalfactors and neuroinflammation, as well as genetic factors, are contributors. This study aims to test the role that might be played by heat shock protein (HSP)70, transforming growth factor (TGF)-β2, Caspase 7 and interferon-γ (IFN-γ)in the pathophysiology of autism.
Materials and methods
HSP70, TGF-β2, Caspase 7 and INF-γ as biochemical parameters related to inflammation were determined in plasma of 20 Saudi autistic male patients and compared to 19 age- and gender-matched control samples.
Results
The obtained data recorded that Saudi autistic patients have remarkably higher plasma HSP70, TGF-β2, Caspase 7 and INF-γ compared to age and gender-matched controls. INF-γ recorded the highest (67.8%) while TGF-β recorded the lowest increase (49.04%). Receiver Operating Characteristics (ROC) analysis together with predictiveness diagrams proved that the measured parameters recorded satisfactory levels of specificity and sensitivity and all could be used as predictive biomarkers.
Conclusion
Alteration of the selected parameters confirm the role of neuroinflammation and apoptosis mechanisms in the etiology of autism together with the possibility of the use of HSP70, TGF-β2, Caspase 7 and INF-γ as predictive biomarkers that could be used to predict safety, efficacy of a specific suggested therapy or natural supplements, thereby providing guidance in selecting it for patients or tailoring its dose.
【 授权许可】
2012 El-Ansary and Al-Ayadhi; licensee BioMed Central Ltd.
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
20150410094318653.pdf | 797KB | download | |
Figure 8. | 39KB | Image | download |
Figure 7. | 28KB | Image | download |
Figure 6. | 28KB | Image | download |
Figure 5. | 31KB | Image | download |
Figure 4. | 30KB | Image | download |
Figure 3. | 36KB | Image | download |
Figure 2. | 32KB | Image | download |
Figure 1. | 31KB | Image | download |
【 图 表 】
Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
Figure 6.
Figure 7.
Figure 8.
【 参考文献 】
- [1]Abrahams BS, Geschwind DH: Advances in autism genetics: on the threshold of a new neurobiology. Nat Rev Genet 2008, 9:341-355.
- [2]Vargas DL, Nascimbene C, Krishnan C, Zimmerman AW, Pardo CA: Neuroglial activation and neuroinflammation in the brain of patients with autism. Ann Neurol 2005, 57:67-81.
- [3]Singh VK: Plasma increase of interleukin-12 and interferon-gamma: pathological significance in autism. J Neuroimmunol 1996, 66:143-145.
- [4]Croonenberghs J, Bosmans E, Deboutte D, Kenis G, Maes M: Activation of the inflammatory response system in autism. Neuropsychobiology 2002, 45(suppl 1):1-6.
- [5]Molloy CA, Morrow AL, Meinzen-Derr J, Schleifer K, Dienger K, ManningCourtney P, Altaye M, Wills-Karp M: Elevated cytokine levels in children with autism spectrum disorder. J Neuroimmunol 2006, 172:198-205.
- [6]Ashwood P, Wakefield AJ: Immune activation of peripheral blood and mucosal CD3α lymphocyte cytokine profiles in children with autism and gastrointestinal symptoms. J Neuroimmunol 2006, 173:126-134.
- [7]Chez MG, Burton Q, Dowling T, Chang M, Khanna P, Kramer C: Memantine as adjunctive therapy in children diagnosed with autistic spectrum disorders: an observation of initial clinical response and maintenance tolerability. J Child Neurol 2007, 22:574-579.
- [8]El-Ansary A, Ben Bacha AG, Al-Ayadhi LY: Proinflammatory and proapoptotic markers in relation to mono and di-cations in plasma of autistic patients from Saudi Arabia. J Neuroinflammation 2011, 8:142. BioMed Central Full Text
- [9]Moore SA, Kim MY, Maiolini A, Tipold A, Oglesbee MJ: Extracellular hsp70 release in canine steroid responsive meningitis-arteritis. Vet Immunol Immunopathol 2012, 145:129-133.
- [10]Turturici G, Sconzo G, Geraci F: Hsp70 and its molecular role in nervous system diseases. Biochem Res Int 2011, 2011:618127.
- [11]Gomes FCA, Sousa Vde O, Romao L: Emerging roles for TGF-β1 in nervous system development. Int J Dev Neurosci 2005, 23:413-424.
- [12]Kastin AJ, Akerstrom V, Pan W: Circulating TGF-beta1 does not cross the intact blood–brain barrier. J Mol Neurosci 2003, 21:43-48.
- [13]Meller R, Skradski SL, Simon RP, Henshall DC: Expression, proteolysis and activation of caspases 6 and 7 during rat C6 glioma cell apoptosis. Neurosci Lett 2002, 324:33-36.
- [14]Siniscalco D, Sapone A, Giordano C, Cirillo A, de Novellis V, de Magistris L, Rossi F, Fasano A, Maione S, Antonucci N: The expression of caspases is enhanced in peripheral blood mononuclear cells of autism spectrum disorder patients. J Autism Dev Disord 2012, 42:1403-1410.
- [15]Li X, Chauhan A, Sheikh AM, Patil S, Chauhan V, Li XM, Ji L, Brown T, Malik M: Elevated immune response in the brain of autistic patients. J Neuroimmunol 2009, 207:111-116.
- [16]El-Tarras AE, Awad NS, Mitwaly N, Alsulaimani AA, Said MM: Association between polymorphisms of SLC6A3 and DRD1 genes and autism among Saudi Arabia Taif population using PCR-restriction fragment length polymorphism (PCR- RFLP). Afr J Biotechnol 2012, 11:11665-11670.
- [17]Theoharides TC, Zhang B: Neuro-inflammation, blood–brain barrier, seizuresand autism. J Neuroinflammation 2011, 8:168. BioMed Central Full Text
- [18]De Jaco A, Comoletti D, Kovarik Z, Gaietta G, Radic Z, Lockridge O, Ellisman MH, Taylor P: A mutation linked with autism reveals a common mechanism of endoplasmic reticulum retention for the alpha, beta-hydrolase fold protein family. J Biol Chem 2006, 281:9667-9676.
- [19]Al-Gadani Y, El-Ansary A, Attas O, Al-Ayadhi L: Oxidative stress and antioxidant status in Saudi autistic children. Clin Biochem 2009, 42:1032-1040.
- [20]Al-Mosalem OA, El-Ansary A, Attas O, Al-Ayadhi L: Metabolic biomarkers related to energy metabolism in Saudi autistic children. Clin Biochem 2009, 42:949-957.
- [21]Kalmar B, Greensmith L: Induction of heatshockproteins for protection against oxidative stress. Adv Drug Deliv Rev 2009, 61:310-318.
- [22]Ran R, Lu A, Zhang L, Tang Y, Zhu H, Xu H, Feng Y, Han C, Zhou G, Rigby AC, Sharp FR: Hsp70 promotes TNF-mediated apoptosis by binding IKKγ and impairing NF-κB survival signaling. Genes Dev 2004, 18:1466-1481.
- [23]Feinstein DL, Galea E, Reis DJ: Suppression of glial nitric oxide synthase induction by heat shock: effects on proteolytic degradation of IκB-α. Nitric Oxide 1997, 1:167-176.
- [24]Guzhova IV, Darieva ZA, Melo AR, Margulis BA: Major stress protein Hsp70 interacts with NF-κB regulatory complex in human T-lymphoma cells. Cell Stress Chaperones 1997, 2:132-139.
- [25]Curry HA, Clemens RA, Shah S, Bradbury CM, Botero A, Goswami P, Gius D: Heat shock inhibits radiation-induced activation of NF-κB via inhibition of I-κB kinase. J Biol Chem 1999, 274:23061-23067.
- [26]Andres D, Diez-Fernandez C, Castrillo A, Cascales M: Relationship between the activation of heat shock factor and the suppression of nuclear factor–κB activity in rat hepatocyte cultures treated with cyclosporine A. Biochem Pharmacol 2002, 64:247-256.
- [27]Malhotra V, Wong HR: Interactions between the heat shock response and the nuclear factor–κ B signaling pathway. Crit Care Med 2002, 30:S89-S95.
- [28]Walker SJ, Segal J, Aschner M: Cultured lymphocytes from autistic children and non-autistic siblings up-regulate heat shock protein RNA in response to thimerosal challenge. Neurotoxicology 2006, 27:685-692.
- [29]Lindholm D, Castrén E, Kiefer R, Zafra F, Thoenen H: Transforming growth factor-beta 1 in the rat brain: increase after injury and inhibition of astrocyte proliferation. J Cell Biol 1992, 117:395-400.
- [30]Buisson A, Lesne S, Docagne F, Ali C, Nicole O, MacKenzie ET, Vivien D: Transforming growth factor-beta and ischemic brain injury. Cell Mol Neurobiol 2003, 23:539-550.
- [31]Logan A, Berry M, Gonzalez AM, Frautschy SA, Sporn MB, Baird A: Effects of transforming growth factor beta 1 on scar production in the injured central nervous system of the rat. Eur J Neurosci 1994, 6:355-363.
- [32]King VR, Phillips JB, Brown RA, Priestley JV: The effects of treatment with antibodies to transforming growth factor beta1 and beta2 following spinal cord damage in the adult rat. Neuroscience 2004, 126:173-183.
- [33]Wyss-Coray T, Feng L, Masliah E, Ruppe MD, Lee HS, Toggas SM, Rockenstein EM, Mucke L: Increased central nervous system production of extracellular matrix components and development of hydrocephalus in transgenic mice overexpressing transforming growth factor-beta 1. Am J Pathol 1995, 147:53-67.
- [34]Frackowiak J, Mazur-Kolecka B, Kuchna I, Nowicki K, Brown WT, Wegiel J: Accumulation of Amyloid-Beta Peptide Speciesin Four Brain Structures in Children with Autism. Proceedings of the 10thInternational Meeting for Autism Research 2011(IMFAR): May 12–14, 2011; San Diego, California
- [35]Al-Ayadhi LY, Ben Bacha AG, Kotb M, El-Ansary AK: A novel study on amyloid β peptide 40, 42 and 40/42 ratio in Saudi autistics. Behav Brain Funct 2012, 8:4. BioMed Central Full Text
- [36]Lesne S, Docagne F, Gabriel C, Liot G, Lahiri DK, Buée L, Plawinski L, Delacourte A, MacKenzie ET, Buisson A, Vivien D: Transforming growth factor-beta 1 potentiates amyloid-beta generation in astrocytes and in transgenic mice. J Biol Chem 2003, 278:18408-18418.
- [37]Walsh JG, Cullen SP, Sheridan C, Lüthi AU, Gerner C, Martin SJ: Executioner caspase-3 and caspase-7 are functionally distinct proteases. Proc Natl Acad Sci U S A 2008, 105:12815-12819.
- [38]Erener S, Pétrilli V, Kassner I, Minotti R, Castillo R, Santoro R, Hassa PO, Tschopp J, Hottiger MO: Inflammasome-activated caspase 7 cleaves PARP1 to enhance the expression of a subset of NF-κB target genes. Mol Cell 2012, 46:200-211.
- [39]Garbett K, Ebert PJ, Mitchell A, Lintas C, Manzi B, Mirnics K, Persico AM: Immune transcriptome alterations in the temporal cortex of subjects with autism. Neurobiol Dis 2008, 30:303-311.
- [40]Tostes MH, Teixeira HC, Gattaz WF, Brandão MA, Raposo NR: Altered neurotrophin, neuropeptide,cytokines and nitric oxide levels in autism. Pharmacopsychiatry 2012, 45:241-243.