期刊论文详细信息
BMC Veterinary Research
Characterization of mesenchymal stem cells derived from the equine synovial fluid and membrane
Durvanei Augusto Maria1  Maria Angelica Miglino2  Raquel Yvonne Arantes Baccarin2  Luis Claudio Lopes Correia da Silva2  Phelipe Oliveira Favaron2  Aline Ambrogi Franco Prado2 
[1] Laboratory of Biochemical and Biophisic, Butantan Institute, Av. Dr. Vital Brasil, 1500, Sao Paulo, 05503-900, Brazil;Department of Surgery, School of Veterinary Medicine and Animal Science, University of Sao Paulo, Av. Prof. Dr. Orlando Marques de Paiva, 87, Cidade Universitária, São Paulo, 05508-270, SP, Brazil
关键词: Regenerative medicine;    Horse;    Synovial Fluid;    Stem cells;   
Others  :  1233998
DOI  :  10.1186/s12917-015-0531-5
 received in 2014-08-18, accepted in 2015-08-04,  发布年份 2015
PDF
【 摘 要 】

Background

Isolation of mesenchymal stem cells (MSCs) in equines, has been reported for different tissues including bone marrow, adipose, umbilical cord, peripheral blood, and yolk sac. In regard to the MSCs derived from synovial fluid (SF) or membrane (SM), there is data available for humans, dogs, pigs, goats and horses. Especially in equines, these cells have being considered promising candidates for articular regeneration. Herein, we established and characterized MSCs obtained from equine SF and SM. Samples were obtained during arthroscopy and cultured using MEM (Minimum Essential Medium). MSCs were characterized by morphology and expression of specific markers for stem cells, pluripotency, inflammation, and cell cycle.

Results

The medium MEM was more effective (97 % ± 2) to maintain both cultures. The cultures were composed by adherent cells with fibroblast-like shape, which had a growth pattern represented by a sigmoidal curve. After the expansion, the cells were analyzed by flow cytometry for stem cells, inflammatory, and cell cycle markers, and both lineages showed significant expression of CD45, Oct3/4, Nanog, CD105, CD90, CD34, CD117, CD133, TRA-1-81, VEGF, and LY6a. In contrast, there were differences in the cell cycle phases between the lineages, which was not observed in relation to the mitochondrial electrical potential.

Conclusion

Given the large impact that joint pathology has on the athletic performance horses, our results suggested that the SF and SM are promising sources of stem cells with satisfactory characteristics of growth and gene expression that can be used in equine regenerative medicine.

【 授权许可】

   
2015 Prado et al.

【 预 览 】
附件列表
Files Size Format View
20151125032502325.pdf 2279KB PDF download
Fig. 7. 90KB Image download
Fig. 6. 127KB Image download
Fig. 5. 56KB Image download
Fig. 4. 98KB Image download
Figure 4. 86KB Image download
Fig. 2. 142KB Image download
Fig. 1. 42KB Image download
【 图 表 】

Fig. 1.

Fig. 2.

Figure 4.

Fig. 4.

Fig. 5.

Fig. 6.

Fig. 7.

【 参考文献 】
  • [1]De Bari C, Delláccio F, Tylzanowski P, Luyten FP. Multipotent mesenchymal stem cells from adult human synovial membrane. Arthritis Rheum. 2001; 44:1928-42.
  • [2]Canto LS, La Corte FD, Brass KE, Ribeiro MD. Frequência de problemas de equilíbrio nos cascos de cavalos crioulos em treinamento. Braz J Vet Res Anim Sci. 2006; 43:489-95.
  • [3]Fan J, Varshney RR, Ren L, Cai D, Wang DA. Synovium-derived mesenchymal stem cells: a new cell source for musculoskeletal regeneration. Tissue Eng Part B. 2009; 15:75-86.
  • [4]Van Pelt RW. Characteristics of normal equine tarsal synovial fluid. Can J Comp Med Vet Sci. 1967; 31:342-7.
  • [5]Gerter R, Kruegel J, Miosge N. New insights into cartilage repair - The role of migratory progenitor cells in osteoarthritis. Matrix Biol. 2012; 31:206-13.
  • [6]Sakaguchi Y, Sekiya I, Yagishita K, Muneta T. Comparison of human stem cells derived from various mesenchymal tissue: superiority of synovium as a cell source. Arthritis Rheum. 2005; 52:2521-9.
  • [7]De Bari C, Dell’accio F, Neys J, Luyten FP. Human synovial membrane derived mesenchymal stem cells for skeletal muscle repair. Arthritis Rheum. 2001; 44:S101.
  • [8]Yoshimura H, Muneta T, Nimura A, Yokoyama A, Koga H, Sekiya I. Comparison of rat mesenchymal stem cells derived from bone marrow, synovium, periosteum, adipose tissue, and muscle. Cell Tissue Res. 2007; 327:449-62.
  • [9]Lee JC, Lee SY, Min HJ, Han SA, Jang J, Lee S, Seong SC, Lee MC. Synovium-derived mesenchymal stem cells encapsulated in a novel injectable gel can repair osteochondral defects in a rabbit model. Tissue Eng Part A. 2012; 18:19-20.
  • [10]Murata D, Miyakoshi D, Hatazoe T, Miura N, Tokunaga S, Fujiki M, Nakayama K, Misumi K. Multipotency of equine mesenchymal stem cells derived from synovial fluid. Vet J. 2014; 202:53-61.
  • [11]Frisbie DD, Smith RKW. Clinical update on the use of mesenchymal stem cells in equine orthopaedics. Equine Vet J. 2010; 42:86-9.
  • [12]Dealy CN. Chondrogenic progenitors for cartilage repair and osteoarthritis treatment. Rheumatol. 2012; 1:2-4.
  • [13]Nagase T, Muneta T, Ju YJ, Hara K, Morito T, Koga H, Nimura A, Mochizuki T, Sekiya I. Analysis of the chondrogenic potential of human synovial stem cells according to harvest site and culture parameters in knees with medial compartment osteoarthritis. Arthritis Rheum. 2008; 58:1389-98.
  • [14]Nishimura K, Solchaga LA, Caplan AI, Yoo JU, Goldberg VM, Johnstone B. Chondroprogenitor cells of synovial tissue. Arthritis Rheum. 1999; 42:2631-7.
  • [15]Koga H, Muneta T, Ju YJ, Nagase T, Nimura A, Mochizuki T, Ichinose S, Von Der Mark K, Sekiya I. Synovial stem cells are regionally specified according to local microenvironments after implantation for cartilage regeneration. Stem Cells. 2007; 25:689-96.
  • [16]Chen Y. Chondrogenic capacities of equine synovial progenitor populations. PhD thesis. University of Illinois, Department of Veterinary Clinical Medicine; 2012.
  • [17]Dominici M, Le BK, Mueller I, Slaper-Cortenbach I, Marini F, Marini F, Krause D, Deans R, Keating A, Prockop DJ, Horwitz E. Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy. 2006; 8:315-7.
  • [18]Longo UG, Petrillo S, Franceschetti E, Berton A, Maffulli N, Denaro V. Stem cells and gene therapy for cartilage repair. Stem Cells Int. 2012; 2012:168385.
  • [19]Kolf CM, Cho E, Tuan RS. Mesenchymal stromal cells. Biology of adult mesenchymal stem cells: regulation of niche, self-renewal and differentiation. Arthritis Res Ther. 2007; 9:204. BioMed Central Full Text
  • [20]Krawetz RJ, Wu YE, Martin L, Rattner JB, Matyas JR, Hart DA. Synovial Fluid Progenitors expressing CD90+ from normal but not osteoarthritic joints undergo chondrogenic differentiation without micro-mass culture. PLoS One. 2012; 7:8.
  • [21]Fickert S, Fiedler J, Brenner RE. Identification, quantification and isolation of mesenchymal progenitor cells from osteoarthritic synovium by fluorescence automated cell sorting. Osteoarthritis Cartilage. 2003; 11:790-800.
  • [22]Jones EA, English A, Henshaw K, Kinsey SE, Markham AF, Emery P, Mcgonagle D. Enumeration and phenotypic characterization of synovial fluid multipotential mesenchymal progenitor cells in inflammatory and degenerative arthritis. Arthritis Rheum. 2004; 50:817-27.
  • [23]De Bari C, Dell’accio F, Karystinou A, Guillot PV, Fisk NM, Jones EA, Mcgonagle D, Khan IM, Archer CW, Mitsiadis TA, Donaldson AN, Luyten FP, Pitzalis C. A biomarker-based mathematical model to predict bone-forming potency of human synovial and periosteal mesenchymal stem cells. Arthritis Rheum. 2008; 58:240-50.
  • [24]Greco SJ, Liu K, Rameshwar P. Functional similarities among genes regulated by OCT4 in human mesenchymal and embryonic stem cells. Stem Cells. 2007; 25:3143-54.
  • [25]Riekstina U, Cakstina I, Parfejevs V, Hoogduijn M, Jankovskis G, Muiznieks I, Muceniece R, Ancans J. Embryonic stem cells marker expression pattern in human mesenchymal stem cells derived from bone marrow, adipose tissue, heart and dermis. Stem Cell Rev Rep. 2009; 5:378-86.
  • [26]Jones EA, Crawford A, English A, Henshaw K, Mundy J, Corscadden D, Chapman T, Emery P, Hatton P, Mcgonagle D. Synovial fluid mesenchymal stem cells in health and early osteoarthritis: detection and functional evaluation at the single-cell level. Arthritis Rheum. 2008; 58:1731-40.
  • [27]Morito T, Muneta T, Hara K, Ju YJ, Mochizuki T, Makino H, Umezawa A, Sekiya I. Synovial fluid-derived mesenchymal stem cells increase after intraarticular ligament injury in humans. Rheumatol. 2008; 47:1137-43.
  • [28]Mcgonagle D, Jones E. A potential role for synovial fluid mesenchymal stem cells in ligament regeneration. Rheumatol. 2008; 47:1114-6.
  • [29]Colville-Nash PR, Willoughby DA. COX-1, COX-2 and articular joint disease: a role for chondroprotective agents. Biorheology. 2002; 39:171-9.
  • [30]Murphy JM, Fink DJ, Hunziker EB, Barry FP. Stem cell therapy in a caprine model of osteoarthritis. Arthritis Rheum. 2003; 48:3464-74.
  • [31]Kobayashi T, Okamoto K, Kobata T, Hasunuma T, Sumida T, Nishiok K. Tumor necrosis factor α regulation of the Fas-mediated apoptosis-signaling pathway in synovial cells. Arthritis Rheum. 1999; 2:519-26.
  • [32]Ogura N, Satoh K, Akutsu M, Tobe M, Kuyama K, Kuboyama N, Sakamaki H, Kujiraoka H, Kondoh T. MCP-1 production in temporomandibular joint inflammation. J Dent Res. 2010; 89:1117-22.
  • [33]Huch K, Mordstein V, Stöve J, Nerlich AG, Arnholdt H, Delling G, Puhl W, Günther KP, Brenner RE. Expression of collagen type I, II, X and Ki-67 in osteochondroma compared to human growth plate cartilage. Eur J Histochem. 2002; 46:249-58.
  • [34]Masago Y, Hosoya A, Kawasaki K, Kawano S, Nasu A, Toguchida J, Fujita K, Nakamura H, Kondoh G, Nagata K. The molecular chaperone Hsp47 is essential for cartilage and endochondral bone formation. J Cell Sci. 2012; 125:1118-28.
  • [35]Izquierdo E, Cañete JD, Celis R, Del Rey MJ, Usategui A, Marsal S, Sanmartí R, Criado G, Pablos JL. Synovial fibroblast hyperplasia in rheumatoid arthritis: clinicopathologic correlations and partial reversal by anti-tumor necrosis factor therapy. Arthritis Rheum. 2011; 63:2575-83.
  • [36]Boveris A, Chance B. The mitochondrial generation of hydrogen peroxide. General properties and effect of hyperbaric oxygen. Biochem J. 1973; 134:707-16.
  文献评价指标  
  下载次数:73次 浏览次数:17次