期刊论文详细信息
Journal of Molecular Psychiatry
The nucleus accumbens: a target for deep brain stimulation in resistant major depressive disorder
Bruno Millet1  Florian Naudet1  Dominique Drapier1  Gabriel Robert1  Marc Verin1  Thibaut Dondaine1  Suzanne Robic3  Cecilia Nauczyciel2 
[1] Rennes University Hospital Centre Research Unit EA 4712 Behavior and Basal Ganglia, 35000, Rennes, France;Academic Department of Adult Psychiatry, Guillaume Régnier Hospital, EA 4712 35000, Rennes, France;Lyon Neuroscience Research Center INSERM U1028 - CNRS UMR 5292 Dynamics and Brain Cognition, 69675, Bron, France
关键词: Nucleus accumbens;    Dopamine;    Deep brain stimulation;    Major depressive disorder;   
Others  :  819997
DOI  :  10.1186/2049-9256-1-17
 received in 2013-06-06, accepted in 2013-09-18,  发布年份 2013
PDF
【 摘 要 】

Objective

This review aimed to investigate the therapeutic potential of Deep Brain Stimulation (DBS) for treating resistant Major Depressive Disorder (MDD). We explored the role of Nucleus accumbens (Nac) as a target for treatment.

Method

We made a systematic review of all studies examining the mechanisms of action of high frequency brain stimulation and the pathophysiology of MDD. We also reported all the studies exploring the therapeutic potential of DBS in MDD.

Results

As a central relay-structure, the Nac seems to play a central role in MDD symptomatology. We investigated its role as a primary target for DBS in depressed patients. Anatomically the Nac is at the centre of the interactions between dopaminergic, serotoninergic and glutamatergic systems. Functionally, the Nac is involved in both normal and abnormal reward processes and in anhedonia and loss of motivation. Due to its central location between the emotional system, the cognitive system and motor control system, the Nac seems to have a central role in mood and feeling regulation.

Conclusion

According to encouraging recent studies, DBS seems to be a promising technique in resistant MDD treatment.

【 授权许可】

   
2013 Nauczyciel et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20140712021748404.pdf 375KB PDF download
Figure 1. 42KB Image download
【 图 表 】

Figure 1.

【 参考文献 】
  • [1]American Psychiatric Association: Diagnostic and Statistical Manual of Mental Disorder. 4th edition. Washington DC, USA: American Psychiatric Publishing; 2000.
  • [2]Bernal M, et al.: Risk factors for suicidality in Europe: results from the ESEMED study. J Affect Disord 2007, 101:27-34.
  • [3]Souery D, Papakostas G, Trivedi M: Treatment resistant depression. J Clin Psychiatry 2006, 67:16-22.
  • [4]Cusin C, Dougherty DD: Somatic therapies for treatment-resistant depression : ECT, TMS, VNS, DBS. Biol Mood Anxiety Disord 2012, 2:14-23. BioMed Central Full Text
  • [5]Fins JJ, Schlaepfer TE, Nuttin B, Kubu CS, Galert T, Sturm V, Merkel R, Mayberg HS: Ethical guidance for the management of conflicts of interest for researchers, engineers and clinicians engaged in the development of therapeutic deep brain stimulation. J Neural Eng 2011, 8(3):033001.
  • [6]Aouizerate B, et al.: Distinct striatal targets in treating obsessive-compulsive disorder and major depression. J Neurosurg 2009, 111:775-779.
  • [7]Aouizerate B, et al.: Deep brain stimulation of the ventral caudate nucleus in the treatment of obsessive-compulsive disorder and major depression. Case report. J Neurosurg 2004, 101:682-686.
  • [8]Bewernick BH, et al.: Nucleus accumbens deep brain stimulation decreases ratings of depression and anxiety in treatment-resistant depression. Biol Psychiatry 2010, 67:110-116.
  • [9]Schlaepfer TE, et al.: Deep brain stimulation to reward circuitry alleviates anhedonia in refractory major depression. Neuropsychopharmacology 2007, 33:368-377.
  • [10]Malone DA Jr, et al.: Deep brain stimulation of the ventral capsule/ventral striatum for treatment-resistant depression. Biol Psychiatry 2009, 65(4):267-275.
  • [11]Narabayashi H: Stereotaxic Vim thalamotomy for treatment of tremor. Eur Neurol 1989, 29(Suppl 1):29.
  • [12]Tasker RR, Siqueira J, Hawrylyshyn P, Organ LW: What happened to VIM thalamotomy for Parkinson’s disease? Appl Neurophysiol 1983, 46:68-83.
  • [13]Ohye C, Hirai T, Miyazaki M, Shibazaki T, Nakajima H: Vim thalamotomy for the treatment of various kinds of tremor. Stereotact Funct Neurosurg 1982, 45:275-280.
  • [14]Benabid AL, et al.: Long-term suppression of tremor by chronic stimulation of the ventral intermediate thalamic nucleus. Lancet 1991, 337:403-406.
  • [15]Gross RE, Lozano AM: Advances in neurostimulation for movement disorders. Neurol Res 2000, 22:247-258.
  • [16]Vitek JL: Mechanisms of deep brain stimulation: excitation or inhibition. Mov Disord 2002, 17(Suppl 3):S69-S72.
  • [17]Abelson JL, et al.: Deep brain stimulation for refractory obsessive-compulsive disorder. Biol Psychiatry 2005, 57:510-516.
  • [18]Filali M, Hutchison WD, Palter VN, Lozano AM, Dostrovsky JO: Stimulation-induced inhibition of neuronal firing in human subthalamic nucleus. Exp Brain Res 2004, 156:274-281.
  • [19]Pahapill PA, et al.: Tremor arrest with thalamic microinjections of muscimol in patients with essential tremor. Ann Neurol 1999, 46:249-252.
  • [20]Shin DS, et al.: High frequency stimulation or elevated K + depresses neuronal activity in the rat entopeduncular nucleus. Neuroscience 2007, 149:68-86.
  • [21]Beurrier C, Bioulac B, Audin J, Hammond C: High-Frequency Stimulation Produces a Transient Blockade of Voltage-Gated Currents in Subthalamic Neurons. J Neurophysiol 2001, 85:1351-1356.
  • [22]Anderson TR, Hu B, Iremonger K, Kiss ZHT: Selective attenuation of afferent synaptic transmission as a mechanism of thalamic deep brain stimulation-induced tremor arrest. J Neurosci 2006, 26:841-850.
  • [23]Bekar L, et al.: Adenosine is crucial for deep brain stimulation-mediated attenuation of tremor. Nat Med 2008, 14:75-80.
  • [24]McCracken CB, Grace AA: Nucleus accumbens deep brain stimulation produces region-specific alterations in local field potential oscillations and evoked responses In Vivo. J Neurosci 2009, 29:5354-5363.
  • [25]Stefani A, et al.: Subthalamic stimulation activates internal pallidus: Evidence from cGMP microdialysis in PD patients. Ann Neurol 2005, 57:448-452.
  • [26]Hershey T, et al.: Cortical and subcortical blood flow effects of subthalamic nucleus stimulation in PD. Neurology 2003, 61:816-821.
  • [27]Jech R, et al.: Functional magnetic resonance imaging during deep brain stimulation: a pilot study in four patients with Parkinson’s disease. Mov Disord 2001, 16:1126-1132.
  • [28]Vitek JL, Hashimoto T, Peoples J, DeLong MR, Bakay RAE: Acute stimulation in the external segment of the globus pallidus improves parkinsonian motor signs. Mov Disord 2004, 19:907-915.
  • [29]Lujan JL, Chaturvedi A, McIntyre CC: Tracking the mechanisms of deep brain stimulation for neuropsychiatric disorders. Front Biosci 2010, 13:5892-5904.
  • [30]Greenberg BD, Rezai AR: Mechanisms and the current state of deep brain stimulation in neuropsychiatry. CNS Spectr 2003, 8:522-526.
  • [31]McIntyre CC, Grill WM, Sherman DL, Thakor NV: Cellular effects of deep brain stimulation: model-based analysis of activation and inhibition. J Neurophysiol 2004, 91:1457-1469.
  • [32]Benabid AL, Benazzous A, Pollak P: Mechanisms of deep brain stimulation. Mov Disord 2002, 17:S73-S74.
  • [33]Basser PJ, Mattiello J, LeBihan D: MR diffusion tensor spectroscopy and imaging. Biophys J 1994, 66:259-267.
  • [34]D’Arceuil HE, Westmoreland S, De-Crespigny AJ: An approach to high resolution diffusion tensor imaging in fixed primate brain. Neuroimage 2007, 35:553-565.
  • [35]Mori S, Crain BJ, Chacko VP, Van-Zijl PC: Three-dimensional tracking of axonal projections in the brain by magnetic resonance imaging. Ann Neurol 1999, 45:265-269.
  • [36]Johansen-Berg H, et al.: Anatomical connectivity of the subgenual cingulate region targeted with deep brain stimulation for treatment-resistant depression. Cereb Cortex 2008, 18:1374-1383.
  • [37]Butson CR, Cooper SE, Henderson JM, McIntyre CC: Patient-specific analysis of the volume of tissue activated during deep brain stimulation. Neuroimage 2007, 34:661-670.
  • [38]Chaturvedi A, Butson CR, Cooper SE, McIntyre CC: Subthalamic nucleus deep brain stimulation: accurate axonal threshold prediction with diffusion tensor based electric field models. Conf Proc IEEE Eng Med Biol Soc 2006, 1:1240-1243.
  • [39]Coffey CE, et al.: Quantitative cerebral anatomy in depression: a controlled magnetic resonance imaging study. Arch Gen Psychiatry 1993, 50:7-16.
  • [40]Ballmaier M, et al.: Mapping brain size and cortical gray matter changes in elderly depression. Biol Psychiatry 2004, 55:382-389.
  • [41]Bremner JD, et al.: Reduced volume of orbitofrontal cortex in major depression. Biol Psychiatry 2002, 51:273-279.
  • [42]Lai Payne ME, Byrum CE, Steffens DC, Krishnan KR: Reduction of orbital frontal cortex volume in geriatric depression. Biol Psychiatry 2000, 48:971-975.
  • [43]MacFall JR, Payne ME, Provenzale JE, Krishnan KRR: Medial orbital frontal lesions in late-onset depression. Biol Psychiatry 2001, 49:803-806.
  • [44]Rajkowska G, et al.: Morphometric evidence for neuronal and glial prefrontal cell pathology in major depression. Biol Psychiatry 1999, 45:1085-1098.
  • [45]Taylor WD, et al.: Smaller orbital frontal cortex volumes associated with functional disability in depressed elders. Biol Psychiatry 2003, 53:144-149.
  • [46]Thomas AJ, et al.: Ischemic basis for deep white matter hyperintensities in major depression: a neuropathological study. Arch Gen Psychiatry 2002, 59:785-792.
  • [47]Bora E, Fornito A, Pantelis C, Yücel M: Gray matter abnormalities in major depressive disorder: a meta-analysis of voxel based morphometry studies. J Affect Disord 2011. 10.1016/j.jad.2011.03.049
  • [48]Si X, Miguel-Hidalgo JJ, O’Dwyer G, Stockmeier CA, Rajkowska G: Age-dependent reductions in the level of glial fibrillary acidic protein in the prefrontal cortex in major depression. Neuropsychopharmacology 2004, 29:2088-2096.
  • [49]Drevets WC: Neuroimaging and neuropathological studies of depression: implications for the cognitive-emotional features of mood disorders. Curr Opin Neurobiol 2001, 11:240-249.
  • [50]Drevets WC, Bogers W, Raichle ME: Functional anatomical correlates of antidepressant drug treatment assessed using PET measures of regional glucose metabolism. Eur Neuropsychopharmacol 2002, 12:527-544.
  • [51]Drevets WC, Price JL, Furey ML: Brain structural and functional abnormalities in mood disorders: implications for neurocircuitry models of depression. Brain Struct Funct 2008, 213:93-118.
  • [52]Drevets WC: Neuroimaging studies of mood disorders. Biol Psychiatry 2000, 48:813-829.
  • [53]Brody AL, et al.: Regional brain metabolic changes in patients with major depression treated with either paroxetine or interpersonal therapy: preliminary findings. Arch Gen Psychiatry 2001, 58:631-640.
  • [54]Brody AL, et al.: Brain metabolic changes associated with symptom factor improvement in major depressive disorder. Biol Psychiatry 2001, 50:171-178.
  • [55]Dunn RT, et al.: Principal components of the beck depression inventory and regional cerebral metabolism in unipolar and bipolar depression. Biol Psychiatry 2002, 51:387-399.
  • [56]Ebmeier K, Rose E, Steele D: Cognitive impairment and fMRI in major depression. Neurotox Res 2006, 10:87-92.
  • [57]Fitzgerald PB, et al.: An fMRI study of prefrontal brain activation during multiple tasks in patients with major depressive disorder. Hum Brain Mapp 2008, 29:490-501.
  • [58]Harvey PO, et al.: Cognitive control and brain resources in major depression: An fMRI study using the n-back task. Neuroimage 2005, 26:860-869.
  • [59]Baxter LR Jr, et al.: Cerebral metabolic rates for glucose in mood disorders. Studies with positron emission tomography and fluorodeoxyglucose F 18. Arch Gen Psychiatry 1985, 42:441-447.
  • [60]Buchsbaum MS, et al.: Effect of sertraline on regional metabolic rate in patients with affective disorder. Biol Psychiatry 1997, 41:15-22.
  • [61]Martinot JL, et al.: Left prefrontal glucose hypometabolism in the depressed state: a confirmation. Am J Psychiatry 1990, 147:1313-1317.
  • [62]Putnam KM, McSweeney LB: Depressive symptoms and baseline prefrontal EEG alpha activity: a study utilizing ecological momentary assessment. Biol Psychol 2008, 77:237-240.
  • [63]Koob GF, Le-Moal M: Drug addiction, dysregulation of reward, and allostasis. Neuropsychopharmacology 2001, 24:97-129.
  • [64]Krishnan V, Nestler EJ: The molecular neurobiology of depression. Nature 2008, 455:894-902.
  • [65]Agid Y, et al.: How can drug discovery for psychiatric disorders be improved? Nat Rev Drug Discov 2007, 6(3):189-201.
  • [66]Berman RM, et al.: Antidepressant effects of ketamine in depressed patients. Biol Psychiatry 2000, 47:351-354.
  • [67]Ahmadi H, Nasehi M, Rostami P, Zarrindast MR: Involvement of the nucleus accumbens shell dopaminergic system in prelimbic NMDA-induced anxiolytic-like behaviors. Neuropharmacology 2013, 71:112-23.
  • [68]Maeng S, Zarate CA Jr: The role of glutamate in mood disorders: results from the ketamine in major depression study and the presumed cellular mechanism underlying its antidepressant effects. Curr Psychiatry Rep 2007, 9:467-474.
  • [69]Zarate CA Jr, et al.: A randomized trial of an N-methyl-D-aspartate antagonist in treatment-resistant major depression. Arch Gen Psychiatry 2006, 63:856-864.
  • [70]Maeng S, et al.: Cellular mechanisms underlying the antidepressant effects of ketamine: role of alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid receptors. Biol Psychiatry 2008, 63:349-352.
  • [71]Machado-Vieira R, Salvadore G, Diazgranados N, Zarate CA Jr: Ketamine and the next generation of antidepressants with a rapid onset of action. Pharmacol Ther 2009, 123:143-150.
  • [72]Numakawa T, et al.: Functional interactions between steroid hormones and neurotrophin BDNF. World J Biol Chem 2010, 1:133-143.
  • [73]Steckler T, Holsboer F, Reul JM: Glucocorticoids and depression. Baillieres Best Pract Res Clin Endocrinol Metab 1999, 13:597-614.
  • [74]Lee BH, Kim YK: The roles of BDNF in the pathophysiology of major depression and in antidepressant treatment. Psychiatry Investig 2010, 7:231-235.
  • [75]Gómez-Lázaro E, et al.: Individual differences in chronically defeated male mice: Behavioral, endocrine, immune, and neurotrophic changes as markers of vulnerability to the effects of stress. Stress 2011. 10.3109/10253890.2011.562939
  • [76]Kendall DA, Stancel GM, Enna SJ: The influence of sex hormones on antidepressant-induced alterations in neurotransmitter receptor binding. J Neurosci 1982, 2:354-360.
  • [77]Schneider LS, et al.: Estrogen replacement and response to fluoxetine in a multicenter geriatric depression trial. Fluoxetine Collaborative Study Group. Am J Geriatr Psychiatry 1997, 5:97-106.
  • [78]Sturm V, et al.: The nucleus accumbens: a target for deep brain stimulation in obsessive-compulsive- and anxiety-disorders. J Chem Neuroanat 2003, 26:293-299.
  • [79]Nestler EJ: Molecular basis of long-term plasticity underlying addiction. Nat Rev Neurosci 2001, 2:119-128.
  • [80]Yadid G, Friedman A: Dynamics of the dopaminergic system as a key component to the understanding of depression. Prog Brain Res 2008, 172:265-286.
  • [81]Berton O, Nestler EJ: New approaches to antidepressant drug discovery: beyond monoamines. Nat Rev Neurosci 2006, 7:137-151.
  • [82]Rada P, et al.: Glutamate release in the nucleus accumbens is involved in behavioral depression during the Porsolt swim test. Neuroscience 2003, 119:557-565.
  • [83]Yan QS, Reith ME, Jobe PC, Dailey JW: Dizocilpine (MK-801) increases not only dopamine but also serotonin and norepinephrine transmissions in the nucleus accumbens as measured by microdialysis in freely moving rats. Brain Res 1997, 765:149-158.
  • [84]Tremblay LK: Probing brain reward system function in major depressive disorder: altered response to dextroamphetamine. Arch Gen Psychiatry 2002, 59:409-416.
  • [85]Pizzagalli DA, et al.: Reduced caudate and nucleus accumbens response to rewards in unmedicated subjects with major depressive disorder. Am J Psychiatry 2009, 166:702-710.
  • [86]Yadid G, Overstreet DH, Zangen A: Limbic dopaminergic adaptation to a stressful stimulus in a rat model of depression. Brain Res 2001, 896:43-47.
  • [87]Epstein J, et al.: Lack of ventral striatal response to positive stimuli in depressed versus normal subjects. Am J Psychiatry 2006, 163:1784-1790.
  • [88]Wacker J, Dillon DG, Pizzagalli DA: The role of the nucleus accumbens and rostral anterior cingulate cortex in anhedonia: Integration of resting EEG, fMRI, and volumetric techniques. Neuroimage 2009, 46:327-337.
  • [89]Harvey PO, Pruessner J, Czechowska Y, Lepage M: Individual differences in trait anhedonia: a structural and functional magnetic resonance imaging study in non-clinical subjects. Mol Psychiatry 2007, 12:767-775.
  • [90]Ito R, Robbins TW, Everitt BJ: Differential control over cocaine-seeking behavior by nucleus accumbens core and shell. Nat Neurosci 2004, 7:389-397.
  • [91]DiNieri JA, et al.: Altered sensitivity to rewarding and aversive drugs in mice with inducible disruption of cAMP response element-binding protein function within the nucleus accumbens. J Neurosci 2009, 29:1855-1859.
  • [92]Mogenson GJ, Swanson LW, Wu M: Neural projections from nucleus accumbens to globus pallidus, substantia innominata, and lateral preoptic-lateral hypothalamic area: an anatomical and electrophysiological investigation in the rat. J Neurosci 1983, 3:189-202.
  • [93]Yoshimura S, et al.: Rostral anterior cingulate cortex activity mediates the relationship between the depressive symptoms and the medial prefrontal cortex activity. J Affect Disord 2010, 122:76-85.
  • [94]Tremblay LK, et al.: Functional neuroanatomical substrates of altered reward processing in major depressive disorder revealed by a dopaminergic probe. Arch Gen Psychiatry 2005, 62:1228-1236.
  • [95]Hamani C, Nobrega JN: Preclinical studies modeling deep brain stimulation for depression. Biol Psychiatry 2012, 72:916-923.
  • [96]Hamani C, Diwan M, Isabella S, Lozano AM, Nobrega JN: Effects of different stimulation parameters on the antidepressant-like response of medial prefrontal cortex deep brain stimulation in rats. J Psychiatr Res 2010, 44:683-687.
  • [97]Hamani C, et al.: Antidepressant-like effects of medial prefrontal cortex deep brain stimulation in rats. Biol Psychiatry 2010, 67:117-124.
  • [98]Gersner R, Toth E, Isserles M, Zangen A: Site-specific antidepressant effects of repeated subconvulsive electrical stimulation: potential role of brain derived neurotrophic factor. Biol Psychiatry 2010, 67:125-132.
  • [99]Falowski SM, et al.: An evaluation of neuroplasticity and behavior after deep brain stimulation of the nucleus accumbens in an animal model of depression. Neurosurgery 2011, 69:1281-1290.
  • [100]Bewernick BH, Kayser S, Sturm V, Schlaepfer TE: Long term effects of nucleus accumbens deep brain stimulation in treatment-resistant depression: evidence for sustained efficacy. Neuropsychopharmacol 2012, 37:1975-1985.
  • [101]Anderson RJ, et al.: Deep brain stimulation for treatment-resistant depression : efficacy, safety and mechanisms of action. Neurosci Behav Rev 2012, 36:1920-1933.
  • [102]Blomsteldt P, et al.: Deep brain stimulation in the treatment of depression. Acta Psychiatr Scand 2011, 123:4-11.
  • [103]Mayberg HS, et al.: Deep brain stimulation for treatment resistant depression. Neuron 2005, 45:651-660.
  • [104]Kennedy SH, et al.: Difference in brain glucose metabolism between responders to cbt and venlafaxine in a 16 week randomized controlled trial. Am J Psychiatry 2007, 164:778-788.
  • [105]Van-Laere K, et al.: Metabolic imaging of anterior capsular stimulation in refractory obsessive-compulsive disorder: a key role for the subgenual anterior cingulate and ventral striatum. J Nucl Med 2006, 47(5):740-7.
  • [106]Schlaepfer TE, Bewernick BH, Kayser S, Mädler B, Coenen VA: Rapid effects of deep brain stimulation for treatment-resistant major depression. Biol Psychiatry 2013, 73(12):1204-12.
  • [107]Deutch AY, Bourdelais AJ, Zahm DS: The nucleus accumbens core and shell: accumbal compartments and their functional attributes. In Limbic Motor Circuits and Neuropsychiatry. Edited by Kalivas PW, Barnes CD. Boca Raton, FL: CRC Press; 1993:45-88.
  • [108]Deutch AY, Cameron DS: Pharmacological characterization of dopamine systems in the nucleus accumbens core and shell. Neuroscience 1992, 46:49-56.
  • [109]Pontieri FE, Tanda G, Di Chiara G: Intravenous cocaine, morphine, and amphetamine preferentially increase extracellular dopamine in the ‘shell’ as compared with the ‘core’ of the rat nucleus accumbens. Proc Natl Acad Sci U S A 1995, 92:12304-12308.
  • [110]Parkinson JA, Olmstead MC, Burns LH, Robbins TW, Everitt BJ: Dissociation in effects of lesions of the nucleus accumbens core and shell on appetitive pavlovian approach behavior and the potentiation of conditioned reinforcement and locomotor activity byd-amphetamine. J Neurosci 1999, 19:2401-2411.
  • [111]Vassoler FM, et al.: Deep brain stimulation of the nucleus accumbens shell attenuates cocaine priming-induced reinstatement of drug seeking in rats. J Neurosci 2008, 28:8735-8739.
  • [112]Fibiger H, LePiane F, Jakubovic A, Phillips A: The role of dopamine in intracranial self-stimulation of the ventral tegmental area. J Neurosci 1987, 7:3888-3896.
  • [113]Garris PA, et al.: Dissociation of dopamine release in the nucleus accumbens from intracranial self-stimulation. Nature 1999, 398:67-69.
  • [114]Springer US, et al.: Long-term habituation of the smile response with deep brain stimulation. Neurocase 2006, 12:191.
  文献评价指标  
  下载次数:12次 浏览次数:15次