期刊论文详细信息
Cancer Cell International
EGCG induces human mesothelioma cell death by inducing reactive oxygen species and autophagy
Shunichiro Kubota3  Yoshitaka Sekido1  Hironobu Hamada2  Yukitoshi Takemura3  Motohiko Satoh3 
[1] Department of Cancer Genetics, Nagoya University Graduate School of Medicine 65, Nagoya, Aichi, 466-8550, Japan;Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, 734-8553, Japan;Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo, 153-8902, Japan
关键词: Chloroquine;    Autophagy;    Apoptosis;    Reactive oxygen species;    EGCG;    Mesothelioma;   
Others  :  794293
DOI  :  10.1186/1475-2867-13-19
 received in 2012-11-21, accepted in 2013-02-15,  发布年份 2013
PDF
【 摘 要 】

Malignant mesothelioma is an asbestos-related fatal disease with no effective cure. We studied whether a green tea polyphenol, epigallocathechin-3-gallate (EGCG), could induce cell death in five human mesothelioma cell lines. We found that EGCG induced apoptosis in all five mesothelioma cell lines in a dose-dependent manner. We further clarified the cell killing mechanism. EGCG induced reactive oxygen species (ROS), and impaired the mitochondrial membrane potential. As treatment with ROS scavengers, catalase and tempol, significantly inhibited the EGCG-induced apoptosis, ROS is considered to be responsible for the EGCG-induced apoptosis. Further, we found that EGCG induced autophagy, and that when autophagy was suppressed by chloroquine, the EGCG-induced cell death was enhanced. Taken together, these results suggest that EGCG has a great potential for the treatment of mesothelioma by inducing apoptosis and autophagy.

【 授权许可】

   
2013 Satoh et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20140705064545631.pdf 2051KB PDF download
Figure 5. 99KB Image download
Figure 4. 90KB Image download
Figure 3. 146KB Image download
Figure 2. 99KB Image download
Figure 1. 68KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

【 参考文献 】
  • [1]Robinson BW, Lake RA: Advances in malignant mesothelioma. N Engl J Med 2005, 353:1591-1603.
  • [2]Peto J, Decarli A, La Vecchia C, Levis F, Negri E: The European mesothelioma epidemic. Br J Cancer 1999, 79:666-672.
  • [3]Stahel RA, Weder W: Improving the outcome in malignant pleural mesothelioma: nonaggressive or aggressive approach? Curr Opin Oncol 2009, 21:124-130.
  • [4]Neri M, Ugolini D, Boccia S, Canessa PA, Cesario A, Leoncini G, Mutti L, Bonassi S: Chemoprevention of asbestos-linked cancers: a systematic review. Anticancer Res 2012, 32:1005-1013.
  • [5]Takemura Y, Satoh M, Satoh K, Hamada H, Sekido Y, Kubota S: High dose of ascorbic acid induces cell death in mesothelioma cells. Biochem Biophys Res Commun 2010, 394:249-253.
  • [6]Ozben T: Oxidative Stress and Apoptosis: Impact on Cancer Therapy. J Pharmacol Sci 2007, 96:2181-2196.
  • [7]Singh BN, Shankar S, Srivastava RK: Green tea catechin, epigallocatechin-3-gallate (EGCG): mechanisms, perspectives and clinical applications. Biochem Pharmacol 2011, 82:1807-1821.
  • [8]Ranzato E, Martinotti S, Magnelli V, Murer B, Biffo S, Mutti L, Burlando B: Epigallocatechin-3 Gallate Induces Mesothelioma Cell Death Via H(2) o(2) -Dependent T-Type Ca(2+) Channel Opening. J Cell Mol Med 2012. in press
  • [9]Martinotti S, Ranzato E, Burlando B: In vitro screening of synergistic ascorbate-drug combinations for the treatment of malignant mesothelioma. Toxicol In Vitro 2011, 25:1568-1574.
  • [10]Mah LY, Ryan KM: Autophagy and cancer. Cold Spring Harb Perspect Biol 2012, 4:a008821.
  • [11]Denton D, Nicolson S, Kumar S: Review Cell death by autophagy: facts and apparent artefacts. Cell Death Differ 2012, 19:87-95.
  • [12]Yang ZJ, Chee CE, Huang S, Sinicrope FA: The role of autophagy in cancer: therapeutic implications. Mol Cancer Ther 2011, 10:1533-1541.
  • [13]Calabretta B, Salomoni P: Inhibition of autophagy: a new strategy to enhance sensitivity of chronic myeloid leukemia stem cells to tyrosine kinase inhibitors. Leuk Lymphoma 2011, 52(Suppl 1):54-59.
  • [14]Guo XL, Li D, Hu F, Song JR, Zhang SS, Deng WJ, Sun K, Zhao QD, Xie XQ, Song YJ, Wu MC, Wei LX: Targeting autophagy potentiates chemotherapy-induced apoptosis and proliferation inhibition in hepatocarcinoma cells. Cancer Lett 2012, 320:171-179.
  • [15]Han W, Sun J, Feng L, Wang K, Li D, Pan Q, Chen Y, Jin W, Wang X, Pan H, Jin H: Autophagy inhibition enhances daunorubicin-induced apoptosis in K562 cells. PLoS One 2011, 6:e28491.
  • [16]Ding ZB, Hui B, Shi YH, Zhou J, Peng YF, Gu CY, Yang H, Shi GM, Ke AW, Wang XY, Song K, Dai Z, Shen YH, Fan J: Autophagy activation in hepatocellular carcinoma contributes to the tolerance of oxaliplatin via reactive oxygen species modulation. Clin Cancer Res 2011, 17:6229-6238.
  • [17]O’Donovan TR, O’Sullivan GC, McKenna SL: Induction of autophagy by drug-resistant esophageal cancer cells promotes their survival and recovery following treatment with chemotherapeutics. Autophagy 2011, 7:509-524.
  • [18]Carew JS, Espitia CM, Esquivel JA 2nd, Mahalingam D, Kelly KR, Reddy G, Giles FJ, Nawrocki ST: Lucanthone is a novel inhibitor of autophagy that induces cathepsin D-mediated apoptosis. J Biol Chem 2011, 286:6602-6613.
  • [19]Carew JS, Nawrocki ST, Cleveland JL: Modulating autophagy for therapeutic benefit. Autophagy 2007, 3:464-467.
  • [20]Jia L, Gopinathan G, Sukumar JT, Gribben JG: Blocking autophagy prevents bortezomib-induced NF-κB activation by reducing I-κBα degradation in lymphoma cells. PLoS One 2012, 7:e32584.
  • [21]Maycotte P, Aryal S, Cummings CT, Thorburn J, Morgan MJ, Thorburn A: Chloroquine sensitizes breast cancer cells to chemotherapy independent of autophagy. Autophagy 2012, 8:200-212.
  • [22]Battisti S, Valente D, Albonici L, Bei R, Modesti A, Palumbo C: Nutritional stress and arginine auxotrophy confer high sensitivity to chloroquine toxicity in mesothelioma cells. Am J Respir Cell Mol Biol 2012, 46:498-506.
  • [23]Mitchell JB, Samuni A, Krishna MC, DeGraff WG, Ahn MS, Samuni U, Russo A: Biologically active metal-independent superoxide dismutase mimics. Biochemistry 1990, 29:2802-2807.
  • [24]Krishna MC, Russo A, Mitchell JB, Goldstein S, Dafni H, Samuni A: Do nitroxide antioxidants act as scavengers of O2-. or as SOD mimics? J Biol Chem 1996, 271:26026-26031.
  • [25]Chatterjee PK, Cuzzocrea S, Brown PA, Zacharowski K, Stewart KN, Mota-Filipe H, Thiemermann C: Tempol, a membrane-permeable radical scavenger, reduces oxidant stress-mediated renal dysfunction and injury in the rat. Kidney Int 2000, 58:658-673.
  • [26]Sasaki H, Lin LR, Yokoyama T, Sevilla MD, Reddy VN, Giblin FJ: TEMPOL protects against lens DNA strand breaks and cataract in the x-rayed rabbit. Invest Ophthalmol Vis Sci 1998, 39:544-552.
  • [27]Chiara Maiuri M, Zalckvar E, Kimchi A, Kroemer G: Self-eating and self-killing: crosstalk between autophagy and apoptosis. Nature Reviews Mol Cell Biol 2007, 8:741-752.
  • [28]Eisenberg-Lerner A, Bialik S, Simon H-U, Kimchi A: Life and death partners: apoptosis, autophagy and the cross-talk between them. Cell Death Differ 2009, 16:966-975.
  • [29]Shanmugam MK, Kannaiyan R, Sethi G: Targeting cell signaling and apoptotic pathways by dietary agents: role in the prevention and treatment of cancer. Nutr Cancer 2011, 63:161-173.
  • [30]Khan N, Afaq F, Saleem M, Ahmad N, Mukhtar H: Targeting multiple signaling pathways by green tea polyphenol (−)-epigallocatechin-3-gallate. Cancer Res 2006, 66:2500-2505.
  • [31]Solomon VR, Lee H: Chloroquine and its analogs: a new promise of an old drug for effective and safe cancer therapies. Eur J Pharmacol 2009, 625:220-233.
  • [32]Wiesner J, Ortmann R, Jomaa H, Schlitzer M: New antimalarial drugs. Angew Chem Int Ed Engl 2003, 42:5274-5293.
  • [33]Breckenridge AM, Winstanley PA: Clinical pharmacology and malaria. Ann Trop Med Parasitol 1997, 91:727-733.
  • [34]Johnson MK, Loo G: Effects of epigallocatechin gallate and quercetin on oxidative damage to cellular DNA. Mutat Res 2000, 459:211-218.
  • [35]Kanadzu M, Lu Y, Morimoto K: Dual function of (−)-epigallocatechin gallate (EGCG) in healthy human lymphocytes. Cancer Lett 2006, 241:250-255.
  • [36]López-Lázaro M: Dual role of hydrogen peroxide in cancer: possible relevance to cancer chemoprevention and therapy. Cancer Lett 2007, 252:1-8.
  • [37]Usami N, Fukui T, Kondo M, Taniguchi T, Yokoyama T, Mori S, Yokoi K, Horio Y, Shimokata K, Sekido Y, Hida T: Establishment and characterization of four malignant pleural mesothelioma cell lines from Japanese patients. Cancer Sci 2006, 97:387-394.
  • [38]Yokoyama A, Kohno N, Fujino S, Hamada H, Inoue Y, Fujioka S, Hiwada K: Origin of heterogeneity of interleukin-6 (IL-6) levels in malignant pleural effusions. Oncol Rep 1994, 1:507-511.
  • [39]Nakataki E, Yano S, Matsumori Y, Goto H, Kakiuchi S, Muguruma H, Bando Y, Uehara H, Hamada H, Kito K, Yokoyama A, Sone S: Novel orthotopic implantation model of human malignant pleural mesothelioma (EHMES-10 cells) highly expressing vascular endothelial growth factor and its receptor. Cancer Sci 2006, 97:183-191.
  文献评价指标  
  下载次数:14次 浏览次数:10次