Journal of Cardiothoracic Surgery | |
The effectiveness of rigid pericardial endoscopy for minimally invasive minor surgeries: cell transplantation, epicardial pacemaker lead implantation, and epicardial ablation | |
Keiichi Fukuda2  Seiji Takatsuki2  Kyoko Soejima3  Kojiro Tanimoto2  Kotaro Fukumoto2  Kazuma Okamoto1  Shunichiro Miyoshi2  Takehiro Kimura2  | |
[1] Department of Cardiovascular surgery, Keio University School of Medicine, Tokyo, Japan;Department of Cardiology, Keio University School of Medicine, Tokyo, Japan;Department of Cardiology, Kyorin University Hospital, Tokyo, Japan | |
关键词: Epicardial ablation; Epicardial pacemaker lead implantation; Cell transplantation; Minimally invasive surgery; Rigid pericardial endoscopy; | |
Others : 1152581 DOI : 10.1186/1749-8090-7-117 |
|
received in 2012-03-30, accepted in 2012-11-03, 发布年份 2012 | |
【 摘 要 】
Background
The efficacy and safety of rigid pericardial endoscopy as the promising minimally invasive approach to the pericardial space was evaluated. Techniques for cell transplantation, epicardial pacemaker lead implantation, and epicardial ablation were developed.
Methods
Two swine and 5 canines were studied to evaluate the safety and efficacy of rigid pericardial endoscopy. After a double pericardiocentesis, a transurethral rigid endoscope was inserted into the pericardial space. The technique to obtain a clear visual field was examined, and acute complications such as hemodynamic changes and the effects on intra-pericardial pressure were evaluated. Using custom-made needles, pacemaker leads, and forceps, the applications for cell transplantation, epicardial pacemaker lead implantation, and epicardial ablation were also evaluated.
Results
The use of air, the detention of a stiff guide wire in the pericardial space, and the stretching of the pericardium with the rigid endoscope were all useful to obtain a clear visual field. A side-lying position also aided observation of the posterior side of the heart. As a cell transplantation methodology, we developed an ultrasonography-guided needle, which allows for the safe visualization of transplantation without major complications. Pacemaker leads were safely and properly implanted, which provides a better outcome for cardiac resynchronizing therapy. Furthermore, the success of clear visualization of the pulmonary veins enabled us to perform epicardial ablation.
Conclusions
Rigid pericardial endoscopy holds promise as a safe method for minimally invasive cell transplantation, epicardial pacemaker lead implantation, and epicardial ablation by allowing clear visualization of the pericardial space.
【 授权许可】
2012 Kimura et al.; licensee BioMed Central Ltd.
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
20150406192155395.pdf | 2920KB | download | |
Figure 5. | 39KB | Image | download |
Figure 4. | 63KB | Image | download |
Figure 3. | 53KB | Image | download |
Figure 2. | 75KB | Image | download |
Figure 1. | 54KB | Image | download |
【 图 表 】
Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
【 参考文献 】
- [1]Schachinger V, Erbs S, Elsasser A, Haberbosch W, Hambrecht R, Holschermann H, Yu J, Corti R, Mathey DG, Hamm CW, et al.: Intracoronary bone marrow-derived progenitor cells in acute myocardial infarction. N Engl J Med 2006, 355:1210-1221.
- [2]Erbs S, Linke A, Adams V, Lenk K, Thiele H, Diederich KW, Emmrich F, Kluge R, Kendziorra K, Sabri O, et al.: Transplantation of blood-derived progenitor cells after recanalization of chronic coronary artery occlusion: first randomized and placebo-controlled study. Circ Res 2005, 97:756-762.
- [3]Fischer-Rasokat U, Assmus B, Seeger FH, Honold J, Leistner D, Fichtlscherer S, Schachinger V, Tonn T, Martin H, Dimmeler S, Zeiher AM: A pilot trial to assess potential effects of selective intracoronary bone marrow-derived progenitor cell infusion in patients with nonischemic dilated cardiomyopathy: final 1-year results of the transplantation of progenitor cells and functional regeneration enhancement pilot trial in patients with nonischemic dilated cardiomyopathy. Circ Heart Fail 2009, 2:417-423.
- [4]Freyman T, Polin G, Osman H, Crary J, Lu M, Cheng L, Palasis M, Wilensky RL: A quantitative, randomized study evaluating three methods of mesenchymal stem cell delivery following myocardial infarction. Eur Heart J 2006, 27:1114-1122.
- [5]Hou D, Youssef EA, Brinton TJ, Zhang P, Rogers P, Price ET, Yeung AC, Johnstone BH, Yock PG, March KL: Radiolabeled cell distribution after intramyocardial, intracoronary, and interstitial retrograde coronary venous delivery: implications for current clinical trials. Circulation 2005, 112:I150-I156.
- [6]Gavira JJ, Perez-Ilzarbe M, Abizanda G, Garcia-Rodriguez A, Orbe J, Paramo JA, Belzunce M, Rabago G, Barba J, Herreros J, et al.: A comparison between percutaneous and surgical transplantation of autologous skeletal myoblasts in a swine model of chronic myocardial infarction. Cardiovasc Res 2006, 71:744-753.
- [7]Menasche P, Alfieri O, Janssens S, McKenna W, Reichenspurner H, Trinquart L, Vilquin JT, Marolleau JP, Seymour B, Larghero J, et al.: The Myoblast Autologous Grafting in Ischemic Cardiomyopathy (MAGIC) trial: first randomized placebo-controlled study of myoblast transplantation. Circulation 2008, 117:1189-1200.
- [8]Pompilio G, Steinhoff G, Liebold A, Pesce M, Alamanni F, Capogrossi MC, Biglioli P: Direct minimally invasive intramyocardial injection of bone marrow-derived AC133+ stem cells in patients with refractory ischemia: preliminary results. Thorac Cardiovasc Surg 2008, 56:71-76.
- [9]Siminiak T, Fiszer D, Jerzykowska O, Grygielska B, Rozwadowska N, Kalmucki P, Kurpisz M: Percutaneous trans-coronary-venous transplantation of autologous skeletal myoblasts in the treatment of post-infarction myocardial contractility impairment: the POZNAN trial. Eur Heart J 2005, 26:1188-1195.
- [10]Gavira JJ, Nasarre E, Abizanda G, Perez-Ilzarbe M, de Martino-Rodriguez A, de Jalon JA G, Mazo M, Macias A, Garcia-Bolao I, Pelacho B, et al.: Repeated implantation of skeletal myoblast in a swine model of chronic myocardial infarction. Eur Heart J 2010, 31:1013-1021.
- [11]Psaltis PJ, Carbone A, Nelson AJ, Lau DH, Jantzen T, Manavis J, Williams K, Itescu S, Sanders P, Gronthos S, et al.: Reparative effects of allogeneic mesenchymal precursor cells delivered transendocardially in experimental nonischemic cardiomyopathy. JACC Cardiovasc Interv 2010, 3:974-983.
- [12]Dib N, Dinsmore J, Lababidi Z, White B, Moravec S, Campbell A, Rosenbaum A, Seyedmadani K, Jaber WA, Rizenhour CS, Diethrich E: One-year follow-up of feasibility and safety of the first U.S., randomized, controlled study using 3-dimensional guided catheter-based delivery of autologous skeletal myoblasts for ischemic cardiomyopathy (CAuSMIC study). JACC Cardiovasc Interv 2009, 2:9-16.
- [13]Leon MB, Kornowski R, Downey WE, Weisz G, Baim DS, Bonow RO, Hendel RC, Cohen DJ, Gervino E, Laham R, et al.: A blinded, randomized, placebo-controlled trial of percutaneous laser myocardial revascularization to improve angina symptoms in patients with severe coronary disease. J Am Coll Cardiol 2005, 46:1812-1819.
- [14]Vale PR, Losordo DW, Milliken CE, Maysky M, Esakof DD, Symes JF, Isner JM: Left ventricular electromechanical mapping to assess efficacy of phVEGF(165) gene transfer for therapeutic angiogenesis in chronic myocardial ischemia. Circulation 2000, 102:965-974.
- [15]Perin EC, Dohmann HF, Borojevic R, Silva SA, Sousa AL, Silva GV, Mesquita CT, Belem L, Vaughn WK, Rangel FO, et al.: Improved exercise capacity and ischemia 6 and 12 months after transendocardial injection of autologous bone marrow mononuclear cells for ischemic cardiomyopathy. Circulation 2004, 110:II213-II218.
- [16]Kornowski R, Hong MK, Gepstein L, Goldstein S, Ellahham S, Ben-Haim SA, Leon MB: Preliminary animal and clinical experiences using an electromechanical endocardial mapping procedure to distinguish infarcted from healthy myocardium. Circulation 1998, 98:1116-1124.
- [17]Psaltis PJ, Carbone A, Nelson A, Lau DH, Manavis J, Finnie J, Teo KS, Mackenzie L, Sanders P, Gronthos S, et al.: An ovine model of toxic, nonischemic cardiomyopathy–assessment by cardiac magnetic resonance imaging. J Card Fail 2008, 14:785-795.
- [18]Vulliet PR, Greeley M, Halloran SM, MacDonald KA, Kittleson MD: Intra-coronary arterial injection of mesenchymal stromal cells and microinfarction in dogs. Lancet 2004, 363:783-784.
- [19]Kimura T, Miyoshi S, Takatsuki S, Tanimoto K, Fukumoto K, Soejima K, Fukuda K: Safety and efficacy of pericardial endoscopy by percutaneous subxyphoid approach in swine heart in vivo. J Thorac Cardiovasc Surg 2011, 142:181-190.
- [20]Sacher F, Roberts-Thomson K, Maury P, Tedrow U, Nault I, Steven D, Hocini M, Koplan B, Leroux L, Derval N, et al.: Epicardial ventricular tachycardia ablation a multicenter safety study. J Am Coll Cardiol 2010, 55:2366-2372.
- [21]Haissaguerre M, Jais P, Shah DC, Takahashi A, Hocini M, Quiniou G, Garrigue S, Le Mouroux A, Le Metayer P, Clementy J: Spontaneous initiation of atrial fibrillation by ectopic beats originating in the pulmonary veins. N Engl J Med 1998, 339:659-666.
- [22]Hamdi H, Planat-Benard V, Bel A, Puymirat E, Geha R, Pidial L, Nematalla H, Bellamy V, Bouaziz P, Peyrard S, et al.: Epicardial adipose stem cell sheets results in greater post-infarction survival than intramyocardial injections. Cardiovasc Res 2011, 91:483-491.
- [23]Gerosa G, Bianco R, Buja G, di Marco F: Totally endoscopic robotic-guided pulmonary veins ablation: an alternative method for the treatment of atrial fibrillation. Eur J Cardiothorac Surg 2004, 26:450-452.
- [24]Kikuchi K, McDonald AD, Sasano T, Donahue JK: Targeted modification of atrial electrophysiology by homogeneous transmural atrial gene transfer. Circulation 2005, 111:264-270.
- [25]Fritscher-Ravens A, Patel K, Ghanbari A, Kahle E, von Herbay A, Fritscher T, Niemann H, Koehler P: Natural orifice transluminal endoscopic surgery (NOTES) in the mediastinum: long-term survival animal experiments in transesophageal access, including minor surgical procedures. Endoscopy 2007, 39:870-875.