Journal of Experimental & Clinical Cancer Research | |
Drug-releasing mesenchymal cells strongly suppress B16 lung metastasis in a syngeneic murine model | |
Giulio Alessandri9  Eugenio Parati9  Francesca Sisto6  Nazario Portolani2  Arnaldo Caruso5  Piero Ceccarelli4  Emilio Ciusani8  Pietro Mazzuca5  Marta Dossena9  Anna Ferri9  Valentina Ceserani9  Valentina Coccè6  Arianna Bonomi6  Angiola Berenzi1,10  Augusto Orlandi3  Daniela Passeri3  Luisa Pascucci4  Enrico Dessy7  Anna Benetti1,10  Simona Artuso1  Carlo Leonetti1  Augusto Pessina6  | |
[1] Experimental Chemotherapy Laboratory, Regina Elena National Cancer Institute, Rome, Italy;Department of Medical and Surgical Sciences, University of Brescia, Brescia, Italy;Department of Biopathology and Image Diagnostics, Anatomic Pathology Institute, University of Rome ‘Tor Vergata’, Rome, Italy;Department of Veterinary Medicine, University of Perugia, Perugia, Italy;Department of Microbiology, Brescia University, Brescia, Italy;Department of Biomedical, Surgical and Dental Sciences, University of Milan, Via Pascal 36, Milan 20133, Italy;Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy;Laboratory of Clinical Pathology and Neurogenetic Medicine, Fondazione IRCCS Neurological Institute Carlo Besta, Milan, Italy;Cellular Neurobiology Laboratory, Department of Cerebrovascular Diseases, IRCCS Neurological Institute C. Besta, Milan, Italy;Department of Clinical and Experimental Sciences, Institute of Pathological Anatomy, University of Brescia, Brescia, Italy | |
关键词: Drug-delivery; B16 melanoma; SDF-1; Paclitaxel; Lung metastasis; Mesenchymal stromal cells; | |
Others : 1225515 DOI : 10.1186/s13046-015-0200-3 |
|
received in 2015-06-22, accepted in 2015-08-04, 发布年份 2015 | |
【 摘 要 】
Background
Mesenchymal stromal cells (MSCs) are considered an important therapeutic tool in cancer therapy. They possess intrinsic therapeutic potential and can also be in vitro manipulated and engineered to produce therapeutic molecules that can be delivered to the site of diseases, through their capacity to home pathological tissues. We have recently demonstrated that MSCs, upon in vitro priming with anti-cancer drug, become drug-releasing mesenchymal cells (Dr-MCs) able to strongly inhibit cancer cells growth.
Methods
Murine mesenchymal stromal cells were loaded with Paclitaxel (Dr-MCsPTX) according to a standardized procedure and their ability to inhibit the growth of a murine B16 melanoma was verified by in vitro assays. The anti-metastatic activity of Dr-MCsPTX was then studied in mice injected i.v. with B16 melanoma cells that produced lung metastatic nodules. Lung nodules were counted under a dissecting stereomicroscope and metastasis investigated by histological analysis.
Results
We found that three i.v. injections of Dr-MCsPTX on day 5, 10 and 15 after tumor injection almost completely abolished B16 lung metastasis. Dr-MCsPTX arrested into lung by interacting with endothelium and migrate toward cancer nodule through a complex mechanism involving primarily mouse lung stromal cells (mL-StCs) and SDF-1/CXCR4/CXCR7 axis.
Conclusions
Our results show for the first time that Dr-MCsPTX are very effective to inhibit lung metastasis formation. Actually, a cure for lung metastasis in humans is mostly unlikely and we do not know whether a therapy combining engineered MSCs and Dr-MCs may work synergistically. However, we think that our approach using Dr-MCs loaded with PTX may represent a new valid and additive therapeutic tool to fight lung metastases and, perhaps, primary lung cancers in human.
【 授权许可】
2015 Pessina et al.
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
20150920094533733.pdf | 3274KB | download | |
Fig. 5. | 109KB | Image | download |
Fig. 4. | 126KB | Image | download |
Fig. 3. | 61KB | Image | download |
Fig. 2. | 95KB | Image | download |
Fig. 1. | 127KB | Image | download |
【 图 表 】
Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
【 参考文献 】
- [1]Stuckey DW, Shah K: Stem cell-based therapies for cancer treatment: separating hope from hype. Nat Rev Cancer 2014, 14:683-691.
- [2]Wei X, Yang X, Han ZP, Qu FF, Shao L: Mesenchymal stem cells: a new trend for cell therapy. Acta Pharmacol Sin 2013, 34:747-754.
- [3]Sasportas LS, Kasmieh R, Wakimoto H, Hingtgen S, van De Water JAJM, Mohapatra G, et al.: Assessment of therapeutic efficacy and fate of engineered human mesenchymal stem cells for cancer therapy. Proc Natl Acad Sci U S A 2009, 106:4822-4827.
- [4]Stuckey DW, Shah K: TRAIL on trial: preclinical advances in cancer therapy. Trends Mol Med 2013, 19:685-694.
- [5]Studeny M, Marini FC, Champlin RE, Zompetta C, Fidler IJ, Andreef M: Bone marrow-derived mesenchymal stem cells as vehicles for interferon-beta delivery into tumors. Cancer Res 2002, 62:3603-3608.
- [6]Ren C, Marini FC, Champlin RE, Zompetta C, Fidler IJ, Andreef M: Therapeutic potential of mesenchymal stem cells producing interferon-alpha in a mouse melanoma lung metastasis model. Stem Cells 2008, 26:2332-2338.
- [7]Loebinger MR, Kyrtatos PG, Turmaine M, Price AN, Pankhurst Q, Lytgoe MF, et al.: Magnetic resonance imaging of mesenchymal stem cells homing to pulmonary metastases using biocompatible magnetic nanoparticles. Cancer Res 2009, 69:8862-8867.
- [8]Studeny M, Marini FC, Dembinski JL, Zompetta C, Cabreira-Hansen M, Bekele BN, et al.: Mesenchymal stem cells: potential precursors for tumor stroma and targeted-delivery vehicles for anticancer agents. J Natl Cancer Inst 2004, 96:1593-1603.
- [9]Hall B, Andreeff M, Marini F: The participation of mesenchymal stem cells in tumor stroma formation and their application as targeted-gene delivery vehicles. Handb Exp Pharmacol 2007, 180:263-283.
- [10]Freyman T, Polin G, Osman H, Crary J, Lu M, Cheng L, et al.: A quantitative, randomized study evaluating three methods of mesenchymal stem cell delivery following myocardial infarction. Eur Heart J 2006, 27:1114-1122.
- [11]Wilson T, Stark C, Holmbon J, Rosling Kuusilehto A, Tirri T, et al.: Fate of bone marrow-derived stromal cells after intraperitoneal infusion or implantation into femoral bone defects in the host animal. J Tissue Eng 2010, 2010:345806.
- [12]Ansboro S, Greiser U, Barry F, Murphy M: Strategies for improved targeting of therapeutic cells: implications for tissue repair. Eur Cell Mater 2012, 23:310-318.
- [13]Antunes MA, Laffey JG, Pelosi P, Rocco PR: Mesenchymal stem cell trials for pulmonary diseases. J Cell Biochem 2014, 115:1023-1032.
- [14]Loebinger MR, Sage EK, Janes SM: Mesenchymal stem cells as vectors for lung disease. Proc Am Thorac Soc 2008, 5:711-716.
- [15]Pessina A, Bonomi A, Coccè V, Invernici G, Navone S, Cavicchini L, et al.: Mesenchymal stromal cells primed with paclitaxel provide a new approach for cancer therapy. PLoS One 2011, 6:e28321.
- [16]Pessina A, Coccè V, Pascucci L, Bonomi A, Cavicchini L, Sisto F, et al.: Mesenchymal stromal cells primed with Paclitaxel attract and kill leukaemia cells, inhibit angiogenesis and improve survival of leukaemia-bearing mice. Br J Haematol 2013, 160:766-778.
- [17]Bonomi A, Coccè V, Cavicchini L, Sisto F, Dossena M, Balzarini N, et al.: Adipose tissue-derived stromal cells primed in vitro with paclitaxel acquire anti-tumor activity. Int J Immunopathol Pharmacol 2013, 26(1 Suppl):33-41.
- [18]Pessina A, Coccè V, Bonomi A, Cavicchini L, Sisto F, Ferrari M, et al.: Human skin-derived fibroblasts acquire in vitro anti-tumor potential after priming with Paclitaxel. Anticancer Agents Med Chem 2013, 13:523-530.
- [19]Bonomi A, Lisini D, Navone SE, Frigeri F, Frigerio S, Ciusani E, et al. Human Cd14+ cells loaded with Paclitaxel inhibit in vitro cell proliferation of Glioblastoma. Cytotherapy in press. doi:10.1016/j.jcyt.2014.09.009.
- [20]Pessina A, Sisto F, Coccè V, Cavicchini L, Pascucci L, Ciusani E, et al.: A mesenchymal stromal cell line resistant to paclitaxel that spontaneously differentiates into osteoblast-like cells. Cell Biol Toxicol 2011, 27:169-180.
- [21]Silagi S: Control of pigment production in mouse melanoma cells in vitro. Evocation and maintenance. J Cell Biol 1969, 43(2):263-274.
- [22]Moore GR, Minowada J: T or B lymphocytes in chronic lymphocytic leukaemia. Lancet 1972, 1:38-39.
- [23]Pessina A, Neri MG, Mineo E, Piccirillo M, Gribaldo L, Brambilla P, et al.: Expression of B cell markers on SR-4987 cells derived from murine marrow stroma. Exp Hematol 1997, 25:536-541.
- [24]Mossman T: Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods 1983, 65:55-63.
- [25]Reed LJ, Muench H: A simple method of estimating fifty percent endpoints. Am J Hyg 1938, 27:493-497.
- [26]Benetti A, Berenzi A, Gambarotti M, Garrafa E, Gelati M, Dessy E, et al.: Transforming growth factor-beta1 and CD105 promote the migration of hepatocellular carcinoma-derived endothelium. Cancer Res 2008, 68:8626-8634.
- [27]Ferlosio A, Orlandi A: Stem cells, aging and pulmonary vascular remodelling. Sarcoidosis Vasc Diffuse Lung Dis 2012, 29:159-160.
- [28]Holmes C, Stanford WL: Concise review: stem cell antigen-1: expression, function, and enigma. Stem Cells 2007, 25:1339-1347.
- [29]Zhang P, Tao DD, Feng YD, Xie DX, Zhou JF, Gong JP: Paclitaxel induces apoptosis of acute leukemia cells in S phase. Ai Zheng 2006, 25:1243-1246.
- [30]Maurus CF, Schneider MK, Schmidt D, Zünd G, Seebach JD: Activation of human microvascular endothelial cells with TNF-alpha and hypoxia/reoxygenation enhances NK-cell adhesion, but not NK-Cytotoxicity. Transplantation 2006, 81:1204-1211.
- [31]Xiao Q, Wang SK, Tian H, Xin L, Zou ZG, Hu YL, et al.: TNF-α increases bone marrow mesenchymal stem cell migration to ischemic tissues. Cell Biochem Biophys 2012, 62:409-414.
- [32]Wright DE, Bowman EP, Wagers AJ, Butcher EC, Weissman IL: Hematopoietic stem cells are uniquely selective in their migratory response to chemokines. J Exp Med 2002, 195:1145-1154.
- [33]Sun X, Cheng G, Hao M, Zheng J, Zhou X, Zhang J, et al.: CXCL12 / CXCR4 / CXCR7 chemokine axis and cancer progression. Cancer Metastasis Rev 2010, 29:709-722.
- [34]Rosenkilde MM, Gerlach LO, Jacobsen JS, Skerlj RT, Bridger GJ, Schwartz TW: Molecular mechanism of AMD3100 antagonism in the CXCR4 receptor: transfer of binding site to the CXCR3 receptor. J Biol Chem 2004, 279:3033-3041.
- [35]Loebinger MR, Eddaoudi A, Davies D, Janes SM: Mesenchymal stem cell delivery of TRAIL can eliminate metastatic cancer. Cancer Res 2009, 69:4134-4142.
- [36]Grisendi G, Bussolari R, Veronesi E, Piccinno S, Burns JS, De Santis G, et al.: Understanding tumor-stroma interplays for targeted therapies by armed mesenchymal stromal progenitors: the Mesenkillers. Am J Cancer Res 2011, 1:787-805.
- [37]Wilson MA, Zhao F, Letrero R, D’Andrea K, Rimm DL, Kirkwood JM, et al.: Correlation of somatic mutations and clinical outcome in melanoma patients treated with Carboplatin, Paclitaxel, and sorafenib. Clin Cancer Res 2014, 20(12):3328-3337.
- [38]Elzaouk L, Moelling K, Pavlovic J: Anti-tumor activity of mesenchymal stem cells producing IL-12 in a mouse melanoma model. Exp Dermatol 2006, 15:865-874.
- [39]Hayes-Jordan A, Wang YX, Walker P: Cox CS Mesenchymal Stromal Cell Dependent Regression of Pulmonary Metastasis from Ewing’s. Front Pediatr 2014, 2:44.
- [40]Matuskova M, Kozovska Z, Toro L, Durinikova E, Tyciakova S, Cierna Z, et al.: Combined enzyme/prodrug treatment by genetically engineered AT-MSC exerts synergy and inhibits growth of MDA-MB-231 induced lung metastases. J Exp Clin Cancer Res 2015, 9(34):33. BioMed Central Full Text
- [41]Bergfeld SA, DeClerck YA: Bone marrow-derived mesenchymal stem cells and the tumor microenvironment. Cancer Metastasis Rev 2010, 29:249-261.
- [42]Direkze NC, Hodivala–Dilke K, Jeffery R, Hunt T, Poulsom R, Oukrif D, et al.: Bone marrow contribution to tumor-associated myofibroblasts and fibroblasts. Cancer Res 2004, 64:8492-8495.
- [43]Zhao S, Wang J, Qin C: Blockade of CXCL12/CXCR4 signaling inhibits intrahepatic cholangiocarcinoma progression and metastasis via inactivation of canonical Wnt pathway. J Exp Clin Cancer Res 2014, 4:33-103.
- [44]Abdel Aziz MT, El Asmar MF, Atta HM, Mahfouz S, Fouad HH, Roshdy NK, et al.: Efficacy of mesenchymal stem cells in suppression of hepatocarcinorigenesis in rats: possible role of Wnt signaling. J Exp Clin Cancer Res 2011, 5:30-49.
- [45]Barcellos-Hoff MH, Ravani SA: Irradiated mammary gland stroma promotes the expression of tumorigenic potential by unirradiated epithelial cells. Cancer Res 2000, 60:1254-1260.
- [46]Bhowmick NA, Chytil A, Plieth D, Gorska AE, Dumont N, Shappell S, et al.: TGF-beta signaling in fibroblasts modulates the oncogenic potential of adjacent epithelia. Science 2004, 303:848-851.
- [47]Tlsty TD, Coussens LM: Tumor stroma and regulation of cancer development. Annu Rev Pathol 2006, 1:119-150.
- [48]Lama VN, Smith L, Badri L, Flint A, Andrei AC, Murray S, et al.: Evidence for tissue-resident mesenchymal stem cells in human adult lung from studies of transplanted allografts. J Clin Invest 2007, 117:989-996.
- [49]Badri L, Walker NM, Ohtsuka T, Wang Z, Delmar M, Flint A, et al.: Epithelial interactions and local engraftment of lung-resident mesenchymal stem cells. Am J Respir Cell Mol Biol 2011, 45:809-816.
- [50]Ampollini L, Madeddu D, Falco A, Frati C, Lorusso B, Graiani G, et al.: Lung mesenchymal cells function as an inductive microenvironment for human lung cancer propagating cells. Eur J Cardiothorac Surg 2014, 46(6):e103-e112.
- [51]Orimo A, Gupta PB, Sgroi DC, Arenzan-Seisdedos F, Delaunay T, Naeem R, et al.: Stromal fibroblasts present in invasive human breast carcinomas promote tumor growth and angiogenesis through elevated SDF-1/CXCL12 secretion. Cell 2005, 121:335-348.
- [52]Hurst DR, Welch DR: A MSC-ing link in metastasis? Nature Med 2007, 13:1289-1291.
- [53]Lodi D, Iannitti T, Palmieri B: Stem cells in clinical practice: applications and warnings. J Exp Clin Cancer Res 2011, 17:30-39.