期刊论文详细信息
Gut Pathogens
The murine appendiceal microbiome is altered in spontaneous colitis and its pathological progression
Rajaraman Eri2  Sarron Randall-Demllo2  Rajkumar Cheluvappa1  Dale Kunde2  Sultan Alkadhi2 
[1] Department of Medicine, St. George Clinical School, University of New South Wales, Sydney, NSW, Australia;Mucosal Biology Laboratory, School of School of Health Sciences, University of Tasmania, Launceston, TAS, Australia
关键词: Bacteroidetes;    Proteobacteria;    Colitis;    Inflammatory bowel disease;    Winnie;    Stool;    Appendix;    Microbiome;   
Others  :  833123
DOI  :  10.1186/1757-4749-6-25
 received in 2014-05-28, accepted in 2014-06-13,  发布年份 2014
PDF
【 摘 要 】

Background

Inflammatory bowel disease (comprising ulcerative colitis and Crohn’s disease) is a multifactorial disease that is extensively associated with stool microbiome changes (dysbiosis). Appendicitis and appendectomy limits subsequent colitis, clinically, and in animal models. We wanted to examine how the appendiceal and stool microbiome fared in our spontaneous colitic Winnie (Muc2−/−) mice model.

Methods

Two C57BL/6 and 10 Winnie mice at ages 12 and 15 weeks were euthanized for stool and caecal patch samples. DNA was extracted using the QIAamp DNA Stool Mini Kit then the V1-V3 hypervariable region of the 16S rRNA gene was sequenced using the Roche/454 GS FLX + pyrosequencing instrument. A Galaxy metagenomic pipeline was used to define phyla and families at sequence similarity threshold of ≥ 80%.

Results

Bacteriodetes was decreased in 15-week Winnie mice appendices compared to corresponding stool samples (P < 0.01). Proteobacteria was increased in appendices of Winnie mice compared to corresponding stool samples (P < 0.05). The Bacteroidetes family Rikenellaceae could be identified only in 15-week-old Winnie mice appendices. A higher quantity of Acetobacteraceae (Proteobacteria phylum) was present in 15-week Winnie mice when compared to 12-week Winnie mice (P < 0.01). Helicobacteraceae (Proteobacteria phylum), which is prominent in all Winnie mice, is absent in control mice.

Conclusions

The appendiceal dysbiosis observed in our Winnie mice is commensurate with, and adds to extant literature data. The presence of Helicobacteraceae (Proteobacteria) only in colitic Winnie mice (but not control mice) is consistent with reports of increased Helicobacter in IBD patients. Bacteroides (Bacteroidetes) decreases may be a reflection of reduced anti-inflammatory commensal species such as B. fragilis. Further research is warranted to expand and delineate the relationship between IBD and the appendix microbiome.

【 授权许可】

   
2014 Alkadhi et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20140715000319745.pdf 2134KB PDF download
Figure 6. 95KB Image download
Figure 5. 77KB Image download
Figure 4. 60KB Image download
Figure 3. 69KB Image download
Figure 2. 85KB Image download
【 图 表 】

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

【 参考文献 】
  • [1]Lomer MCE: Dietary and nutritional considerations for inflammatory bowel disease. Proc Nutr Soc 2011, 70:329-335.
  • [2]Jaeger S, Stange EF, Wehkamp J: Inflammatory bowel disease: an impaired barrier disease. Langenbecks Arch Surg 2013, 398:1-12.
  • [3]Wilson J, Hair C, Knight R, Catto-Smith A, Bell S, Kamm M, Desmond P, McNeil J, Connell W: High incidence of inflammatory bowel disease in Australia: a prospective population-based Australian incidence study. Inflamm Bowel Dis 2010, 16:1550-1556.
  • [4]Morrison G, Headon B, Gibson P: Update in inflammatory bowel disease. Aust Fam Physician 2009, 38:956-961.
  • [5]Proal AD, Albert PJ, Marshall TG: The human microbiome and autoimmunity. Curr Opin Rheumatol 2013, 25:234-240.
  • [6]Backhed F, Ley RE, Sonnenburg JL, Peterson DA, Gordon JI: Host-bacterial mutualism in the human intestine. Science (New York, NY) 2005, 307:1915-1920.
  • [7]Vipperla K, O’Keefe SJ: The Microbiota and Its Metabolites in Colonic Mucosal Health and Cancer Risk. Nutr Clin Pract 2012, 27:624-635.
  • [8]Cheluvappa R, Luo AS, Grimm MC: Autophagy suppression by appendicitis and appendectomy protects against colitis. Inflamm Bowel Dis 2014, 20:847-855.
  • [9]Brown K, DeCoffe D, Molcan E, Gibson DL: Diet-Induced Dysbiosis of the Intestinal Microbiota and the Effects on Immunity and Disease. Nutrients 2012, 4:1095-1119.
  • [10]Sartor RB: Therapeutic manipulation of the enteric microflora in inflammatory bowel diseases: antibiotics, probiotics, and prebiotics. Gastroenterology 2004, 126:1620-1633.
  • [11]Kostic AD, Howitt MR, Garrett WS: Exploring host-microbiota interactions in animal models and humans. Genes Dev 2013, 27:701-718.
  • [12]Eri RD, Adams RJ, Tran TV, Tong H, Das I, Roche DK, Oancea I, Png CW, Jeffery PL, Radford-Smith GL, Cook MC, Florin TH, McGuckin MA: An intestinal epithelial defect conferring ER stress results in inflammation involving both innate and adaptive immunity. Mucosal Immunol 2011, 4:354-364.
  • [13]McGuckin MA, Eri RD, Das I, Lourie R, Florin TH: ER stress and the unfolded protein response in intestinal inflammation. Am J Physiol Gastrointest Liver Physiol 2010, 298:G820-G832.
  • [14]Heazlewood CK, Cook MC, Eri R, Price GR, Tauro SB, Taupin D, Thornton DJ, Png CW, Crockford TL, Cornall RJ, Adams R, Kato M, Nelms KA, Hong NA, Florin TH, Goodnow CC, McGuckin MA: Aberrant mucin assembly in mice causes endoplasmic reticulum stress and spontaneous inflammation resembling ulcerative colitis. PLoS Med 2008, 5:e54.
  • [15]Koutroubakis IE, Vlachonikolis IG, Kouroumalis EA: Role of appendicitis and appendectomy in the pathogenesis of ulcerative colitis: a critical review. Inflamm Bowel Dis 2002, 8:277-286.
  • [16]Cheluvappa R, Luo AS, Grimm MC: T helper type 17 pathway suppression by appendicitis and appendectomy protects against colitis. Clin Exp Immunol 2014, 175:316-322.
  • [17]Mizoguchi A, Mizoguchi E, Chiba C, Bhan AK: Role of appendix in the development of inflammatory bowel disease in TCR-alpha mutant mice. J Exp Med 1996, 184:707-715.
  • [18]Matsushita M, Takakuwa H, Matsubayashi Y, Nishio A, Ikehara S, Okazaki K: Appendix is a priming site in the development of ulcerative colitis. World J Gastroenterol 2005, 11:4869-4874.
  • [19]Krieglstein CF, Cerwinka WH, Laroux FS, Grisham MB, Schurmann G, Bruwer M, Granger DN: Role of appendix and spleen in experimental colitis. J Surg Res 2001, 101:166-175.
  • [20]Suau A, Bonnet R, Sutren M, Godon JJ, Gibson GR, Collins MD, Dore J: Direct analysis of genes encoding 16S rRNA from complex communities reveals many novel molecular species within the human gut. Appl Environ Microbiol 1999, 65:4799-4807.
  • [21]Schloss PD, Handelsman J: Metagenomics for studying unculturable microorganisms: cutting the Gordian knot. Genome Biol 2005, 6:229.
  • [22]Frank DN, Pace NR: Gastrointestinal microbiology enters the metagenomics era. Curr Opin Gastroenterol 2008, 24:4-10.
  • [23]Langille MGI, Zaneveld J, Caporaso JG, McDonald D, Knights D, Reyes JA, Clemente JC, Burkepile DE, Thurber RLV, Knight R, Beiko RG, Huttenhower C: Predictive functional profiling of microbial communities using 16S rRNA marker gene sequences. Nat Biotechnol 2013, 31:814.
  • [24]Fite A, Macfarlane S, Furrie E, Bahrami B, Cummings JH, Steinke DT, Macfarlane GT: Longitudinal Analyses of Gut Mucosal Microbiotas in Ulcerative Colitis in Relation to Patient Age and Disease Severity and Duration. J Clin Microbiol 2013, 51:849-856.
  • [25]Gophna U, Sommerfeld K, Gophna S, Doolittle WF, van Zanten S: Inerences between tissue-associated intestinal microfloras of patients with Crohn’s disease and ulcerative colitis. J Clin Microbiol 2006, 44:4136-4141.
  • [26]Frank DN, Amand ALS, Feldman RA, Boedeker EC, Harpaz N, Pace NR: Molecular-phylogenetic characterization of microbial community imbalances in human inflammatory bowel diseases. Proc Natl Acad Sci U S A 2007, 104:13780-13785.
  • [27]Lepage P, Hasler R, Spehlmann ME, Rehman A, Zvirbliene A, Begun A, Ott S, Kupcinskas L, Dore J, Raedler A, Schreiber S: Twin Study Indicates Loss of Interaction Between Microbiota and Mucosa of Patients With Ulcerative Colitis. Gastroenterology 2011, 141:227-236.
  • [28]Fava F, Danese S: Intestinal microbiota in inflammatory bowel disease: friend of foe? World J Gastroenterol 2011, 17:557-566.
  • [29]Lathrop SK, Bloom SM, Rao SM, Nutsch K, Lio CW, Santacruz N, Peterson DA, Stappenbeck TS, Hsieh CS: Peripheral education of the immune system by colonic commensal microbiota. Nature 2011, 478:250-252.
  • [30]Mazmanian SK, Round JL, Kasper DL: A microbial symbiosis factor prevents intestinal inflammatory disease. Nature 2008, 453:620-625.
  • [31]Mukhopadhya I, Hansen R, El-Omar EM, Hold GL: IBD-what role do Proteobacteria play? Nat Rev Gastroenterol Hepatol 2012, 9:219-230.
  • [32]Loubinoux J, Bronowicki JP, Pereira IA, Mougenel JL, Faou AE: Sulfate-reducing bacteria in human feces and their association with inflammatory bowel diseases. FEMS Microbiol Ecol 2002, 40:107-112.
  • [33]Pitcher MC, Cummings JH: Hydrogen sulphide: a bacterial toxin in ulcerative colitis? Gut 1996, 39:1-4.
  • [34]Pitcher MC, Beatty ER, Cummings JH: The contribution of sulphate reducing bacteria and 5-aminosalicylic acid to faecal sulphide in patients with ulcerative colitis. Gut 2000, 46:64-72.
  • [35]Thomson JM, Hansen R, Berry SH, Hope ME, Murray GI, Mukhopadhya I, McLean MH, Shen Z, Fox JG, El-Omar E, Hold GL: Enterohepatic helicobacter in ulcerative colitis: potential pathogenic entities? PLoS One 2011, 6:e17184.
  • [36]Zhang L, Day A, McKenzie G, Mitchell H: Nongastric Helicobacter species detected in the intestinal tract of children. J Clin Microbiol 2006, 44:2276-2279.
  • [37]Maukonen J, Simoes C, Saarela M: The currently used commercial DNA-extraction methods give different results of clostridial and actinobacterial populations derived from human fecal samples. FEMS Microbiol Ecol 2012, 79:697-708.
  • [38]Ariefdjohan MW, Savaiano DA, Nakatsu CH: Comparison of DNA extraction kits for PCR-DGGE analysis of human intestinal microbial communities from fecal specimens. Nutr J 2010, 9:23.
  • [39]Claassen S, du Toit E, Kaba M, Moodley C, Zar HJ, Nicol MP: A comparison of the efficiency of five different commercial DNA extraction kits for extraction of DNA from faecal samples. J Microbiol Methods 2013, 94:103-110.
  • [40]Li E, Hamm CM, Gulati AS, Sartor RB, Chen H, Wu X, Zhang T, Rohlf FJ, Zhu W, Gu C, Robertson CE, Pace NR, Boedeker EC, Harpaz N, Yuan J, Weinstock GM, Sodergren E, Frank DN: nflammatory Bowel Diseases Phenotype, C. difficile and NOD2 Genotype Are Associated with Shifts in Human Ileum Associated Microbial Composition. PLoS One 2012, 7:e26284.
  • [41]Van der Sluis M, De Koning BA, De Bruijn AC, Velcich A, Meijerink JP, Van Goudoever JB, Buller HA, Dekker J, Van Seuningen I, Renes IB, Einerhand AW: Muc2-deficient mice spontaneously develop colitis, indicating that MUC2 is critical for colonic protection. Gastroenterology 2006, 131:117-129.
  • [42]Nagalingam NA, Lynch SV: Role of the microbiota in inflammatory bowel diseases. Inflamm Bowel Dis 2012, 18:968-984.
  • [43]Landy J, Al-Hassi HO, McLaughlin SD, Walker AW, Ciclitira PJ, Nicholls RJ, Clark SK, Hart AL: Review article: faecal transplantation therapy for gastrointestinal disease. Aliment Pharmacol Ther 2011, 34:409-415.
  • [44]Merchant R, Mower WR, Ourian A, Abrahamian FM, Moran GJ, Krishnadasan A, Talan DA: Association Between Appendectomy and Clostridium difficile Infection. J clinical Med Res 2012, 4:17-19.
  • [45]Sanders NL, Bollinger RR, Lee R, Thomas S, Parker W: Appendectomy and Clostridium difficile colitis: Relationships revealed by clinical observations and immunology. World J Gastroenterol 2013, 19:5607-5614.
  • [46]Kommedal O, Simmon K, Karaca D, Langeland N, Wiker HG: Dual priming oligonucleotides for broad-range amplification of the bacterial 16S rRNA gene directly from human clinical specimens. J Clin Microbiol 2012, 50:1289-1294.
  • [47]Goecks J, Nekrutenko A, Taylor J, Galaxy T: Galaxy: a comprehensive approach for supporting accessible, reproducible, and transparent computational research in the life sciences. Genome Biol 2010, 11:R86.
  • [48]Kasokovsky Pond S, Wadhawan S, Chiaromonte F, Ananda G, Chung W, Taylor J, Nekrutenko A, Galaxy T: Windshield splatter analysis with thye Galaxy metagenomic pipeline. Genome Res 2009, 19:2144-2153.
  • [49]Zhang Z, Schwartz S, Wagner L, Miller W: A greedy algorithm for aligning DNA sequences. J Comput Biol 2000, 7:203-214.
  文献评价指标  
  下载次数:153次 浏览次数:127次