期刊论文详细信息
Epigenetics & Chromatin
DNase I hypersensitivity analysis of the mouse brain and retina identifies region-specific regulatory elements
Thomas A Reh2  John Stamatoyannopoulos4  Michael A Bender3  R Scott Hansen4  Theresa K Canfield4  Jeff Vierstra4  Richard S Sandstrom4  Peter Sabo4  Robert Thurman4  Kyle Siebenthall4  Anna La Torre2  Joseph A Brzezinski5  Matthew S Wilken1 
[1] Molecular and Cellular Biology Program, University of Washington, MCB Program Office, T-466 Health Sciences Building, Box 357275, Seattle, WA 98195, USA;Department of Biological Structure, University of Washington, 1959 NE Pacific Street, Box 357420, Seattle, WA 98195, USA;Clinical Research Division, Fred Hutchinson Cancer Research Center, 1100 Fairview Avenue North, Seattle, WA 98109, USA;Department of Genome Sciences, University of Washington, Foege Building S-250, 3720 15th Ave NE, Box 355065, Seattle, WA 98195, USA;Current address: Department of Ophthalmology, University of Colorado School of Medicine, 1675 Aurora Court, Aurora, CO 80045, USA
关键词: Cis-regulation;    DNase-seq;    Retina;    Central nervous system;   
Others  :  1143291
DOI  :  10.1186/1756-8935-8-8
 received in 2014-12-29, accepted in 2015-01-27,  发布年份 2015
PDF
【 摘 要 】

Background

The brain, spinal cord, and neural retina comprise the central nervous system (CNS) of vertebrates. Understanding the regulatory mechanisms that underlie the enormous cell-type diversity of the CNS is a significant challenge. Whole-genome mapping of DNase I-hypersensitive sites (DHSs) has been used to identify cis-regulatory elements in many tissues. We have applied this approach to the mouse CNS, including developing and mature neural retina, whole brain, and two well-characterized brain regions, the cerebellum and the cerebral cortex.

Results

For the various regions and developmental stages of the CNS that we analyzed, there were approximately the same number of DHSs; however, there were many DHSs unique to each CNS region and developmental stage. Many of the DHSs are likely to mark enhancers that are specific to the specific CNS region and developmental stage. We validated the DNase I mapping approach for identification of CNS enhancers using the existing VISTA Browser database and with in vivo and in vitro electroporation of the retina. Analysis of transcription factor consensus sites within the DHSs shows distinct region-specific profiles of transcriptional regulators particular to each region. Clustering developmentally dynamic DHSs in the retina revealed enrichment of developmental stage-specific transcriptional regulators. Additionally, we found reporter gene activity in the retina driven from several previously uncharacterized regulatory elements surrounding the neurodevelopmental gene Otx2. Identification of DHSs shared between mouse and human showed region-specific differences in the evolution of cis-regulatory elements.

Conclusions

Overall, our results demonstrate the potential of genome-wide DNase I mapping to cis-regulatory questions regarding the regional diversity within the CNS. These data represent an extensive catalogue of potential cis-regulatory elements within the CNS that display region and temporal specificity, as well as a set of DHSs common to CNS tissues. Further examination of evolutionary conservation of DHSs between CNS regions and different species may reveal important cis-regulatory elements in the evolution of the mammalian CNS.

【 授权许可】

   
2015 Wilken et al.; licensee BioMed Central.

【 预 览 】
附件列表
Files Size Format View
20150329033719206.pdf 2798KB PDF download
Figure 5. 104KB Image download
Figure 4. 103KB Image download
Figure 3. 104KB Image download
Figure 2. 71KB Image download
Figure 1. 94KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

【 参考文献 】
  • [1]Bernard A, Lubbers LS, Tanis KQ, Luo R, Podtelezhnikov AA, Finney EM, et al.: Transcriptional architecture of the primate neocortex. Neuron 2012, 73:1083-99. doi:10.1016/j.neuron.2012.03.002
  • [2]Hawrylycz MJ, Lein ES, Guillozet-Bongaarts AL, Shen EH, Ng L, Miller JA, et al.: An anatomically comprehensive atlas of the adult human brain transcriptome. Nature 2012, 489:391-9. doi:10.1038/nature11405
  • [3]Shen EH, Overly CC, Jones AR: The Allen Human Brain Atlas: comprehensive gene expression mapping of the human brain. Trends Neurosci 2012, 35:711-4. doi:10.1016/j.tins.2012.09.005
  • [4]Blow MJ, McCulley DJ, Li Z, Zhang T, Akiyama JA, Holt A, et al.: ChIP-Seq identification of weakly conserved heart enhancers. Nat Genet 2010, 42:806-10. doi:10.1038/ng.650
  • [5]Hardison RC, Taylor J: Genomic approaches towards finding cis-regulatory modules in animals. Nat Rev Genet 2012, 13:469-83. doi:10.1038/nrg3242
  • [6]Taylor J, Tyekucheva S, King DC, Hardison RC, Miller W, Chiaromonte F: ESPERR: learning strong and weak signals in genomic sequence alignments to identify functional elements. Genome Res 2006, 16:1596-604. doi:10.1101/gr.4537706
  • [7]Visel A, Prabhakar S, Akiyama JA, Shoukry M, Lewis KD, Holt A, et al.: Ultraconservation identifies a small subset of extremely constrained developmental enhancers. Nat Genet 2008, 40:158-60. doi:10.1038/ng.2007.55
  • [8]Arnold CD, Gerlach D, Stelzer C, Boryn LM, Rath M, Stark A: Genome-wide quantitative enhancer activity maps identified by STARR-seq. Science 2013, 339:1074-7. doi:10.1126/science.1232542
  • [9]de Laat W, Duboule D: Topology of mammalian developmental enhancers and their regulatory landscapes. Nature 2013, 502:499-506. doi:10.1038/nature12753
  • [10]Lee D, Karchin R, Beer MA: Discriminative prediction of mammalian enhancers from DNA sequence. Genome Res 2011, 21:2167-80. doi:10.1101/gr.121905.111
  • [11]May D, Blow MJ, Kaplan T, McCulley DJ, Jensen BC, Akiyama JA, et al.: Large-scale discovery of enhancers from human heart tissue. Nat Genet 2012, 44:89-93. doi:10.1038/ng.1006
  • [12]Visel A, Akiyama JA, Shoukry M, Afzal V, Rubin EM, Pennacchio LA: Functional autonomy of distant-acting human enhancers. Genomics 2009, 93:509-13. doi:10.1016/j.ygeno.2009.02.002
  • [13]Zinzen RP, Girardot C, Gagneur J, Braun M, Furlong EE: Combinatorial binding predicts spatio-temporal cis-regulatory activity. Nature 2009, 462:65-70. doi:10.1038/nature08531
  • [14]Shen Y, Yue F, McCleary DF, Ye Z, Edsall L, Kuan S, et al.: A map of the cis-regulatory sequences in the mouse genome. Nature 2012, 488:116-20. doi:10.1038/nature11243
  • [15]Nord AS, Blow MJ, Attanasio C, Akiyama JA, Holt A, Hosseini R, et al.: Rapid and pervasive changes in genome-wide enhancer usage during mammalian development. Cell 2013, 155:1521-31. doi:10.1016/j.cell.2013.11.033
  • [16]Vierstra J, Rynes E, Sandstrom R, Zhang M, Canfield T, Hansen RS, et al.: Mouse regulatory DNA landscapes reveal global principles of cis-regulatory evolution. Science 2014, 346:1007-12. doi:10.1126/science.1246426
  • [17]Birney E, Stamatoyannopoulos JA, Dutta A, Guigo R, Gingeras TR, Margulies EH, et al.: Identification and analysis of functional elements in 1% of the human genome by the ENCODE pilot project. Nature 2007, 447:799-816. doi:10.1038/nature05874
  • [18]Hesselberth JR, Chen X, Zhang Z, Sabo PJ, Sandstrom R, Reynolds AP, et al.: Global mapping of protein-DNA interactions in vivo by digital genomic footprinting. Nat Methods 2009, 6:283-9. doi:10.1038/nmeth.1313
  • [19]John S, Sabo PJ, Canfield TK, Lee K, Vong S, Weaver M, et al.: Genome-scale mapping of DNase I hypersensitivity. Curr Protoc Mol Biol 2013, 27(21):27. doi:10.1002/0471142727.mb2127s103
  • [20]John S, Sabo PJ, Thurman RE, Sung MH, Biddie SC, Johnson TA, et al.: Chromatin accessibility pre-determines glucocorticoid receptor binding patterns. Nat Genet 2011, 43:264-8. doi:10.1038/ng.759
  • [21]Sabo PJ, Kuehn MS, Thurman R, Johnson BE, Johnson EM, Cao H, et al.: Genome-scale mapping of DNase I sensitivity in vivo using tiling DNA microarrays. Nat Methods 2006, 3:511-8. doi:10.1038/nmeth890
  • [22]Thurman RE, Rynes E, Humbert R, Vierstra J, Maurano MT, Haugen E, et al.: The accessible chromatin landscape of the human genome. Nature 2012, 489:75-82. doi:10.1038/nature11232
  • [23]Mercer TR, Edwards SL, Clark MB, Neph SJ, Wang H, Stergachis AB, et al.: DNase I-hypersensitive exons colocalize with promoters and distal regulatory elements. Nat Genet 2013, 45:852-9. doi:10.1038/ng.2677
  • [24]Rosenbloom KR, Sloan CA, Malladi VS, Dreszer TR, Learned K, Kirkup VM, et al.: ENCODE data in the UCSC Genome Browser: year 5 update. Nucleic Acids Res 2013, 41:D56-63. doi:10.1093/nar/gks1172
  • [25]McLean CY, Bristor D, Hiller M, Clarke SL, Schaar BT, Lowe CB, et al.: GREAT improves functional interpretation of cis-regulatory regions. Nat Biotechnol 2010, 28:495-501. doi:10.1038/nbt.1630
  • [26]Yamagata M, Sanes JR: Expanding the Ig superfamily code for laminar specificity in retina: expression and role of contactins. J Neurosci 2012, 32:14402-14. doi:10.1523/JNEUROSCI.3193-12.2012
  • [27]Zipursky SL, Grueber WB: The molecular basis of self-avoidance. Annu Rev Neurosci 2013, 36:547-68. doi:10.1146/annurev-neuro-062111-150414
  • [28]Visel A, Taher L, Girgis H, May D, Golonzhka O, Hoch RV, et al.: A high-resolution enhancer atlas of the developing telencephalon. Cell 2013, 152:895-908. doi:10.1016/j.cell.2012.12.041
  • [29]Wenger AM, Clarke SL, Notwell JH, Chung T, Tuteja G, Guturu H, et al.: The enhancer landscape during early neocortical development reveals patterns of dense regulation and co-option. PLoS Genet 2013, 9:e1003728. doi:10.1371/journal.pgen.1003728
  • [30]Visel A, Minovitsky S, Dubchak I, Pennacchio LA: VISTA Enhancer Browser–a database of tissue-specific human enhancers. Nucleic Acids Res 2007, 35:D88-92. doi:10.1093/nar/gkl822
  • [31]Aprea J, Nonaka-Kinoshita M, Calegari F: Generation and characterization of Neurod1-CreER(T2) mouse lines for the study of embryonic and adult neurogenesis. Genesis 2014, 52:870-8. doi:10.1002/dvg.22797
  • [32]Bosman LW, Heinen K, Spijker S, Brussaard AB: Mice lacking the major adult GABAA receptor subtype have normal number of synapses, but retain juvenile IPSC kinetics until adulthood. J Neurophysiol 2005, 94:338-46. doi:10.1152/jn.00084.2005
  • [33]Machanick P, Bailey TL: MEME-ChIP: motif analysis of large DNA datasets. Bioinformatics 2011, 27:1696-7. doi:10.1093/bioinformatics/btr189
  • [34]Bailey TL, Boden M, Buske FA, Frith M, Grant CE, Clementi L, et al.: MEME SUITE: tools for motif discovery and searching. Nucleic Acids Res 2009, 37:W202-8. doi:10.1093/nar/gkp335
  • [35]Bailey TL: DREME: motif discovery in transcription factor ChIP-seq data. Bioinformatics 2011, 27:1653-9. doi:10.1093/bioinformatics/btr261
  • [36]Jia L, Oh EC, Ng L, Srinivas M, Brooks M, Swaroop A, et al.: Retinoid-related orphan nuclear receptor RORbeta is an early-acting factor in rod photoreceptor development. Proc Natl Acad Sci U S A 2009, 106:17534-9. doi:10.1073/pnas.0902425106
  • [37]Blackshaw S, Harpavat S, Trimarchi J, Cai L, Huang H, Kuo WP, et al.: Genomic analysis of mouse retinal development. PLoS Biol 2004, 2:E247. doi:10.1371/journal.pbio.0020247
  • [38]Siegert S, Cabuy E, Scherf BG, Kohler H, Panda S, Le YZ, et al.: Transcriptional code and disease map for adult retinal cell types. Nat Neurosci 2012, 15:487-95. doi:10.1038/nn.3032
  • [39]Jeon CJ, Strettoi E, Masland RH: The major cell populations of the mouse retina. J Neurosci 1998, 18:8936-46.
  • [40]Furukawa T, Morrow EM, Cepko CL: Crx, a novel otx-like homeobox gene, shows photoreceptor-specific expression and regulates photoreceptor differentiation. Cell 1997, 91:531-41.
  • [41]Yoshida S, Mears AJ, Friedman JS, Carter T, He S, Oh E, et al.: Expression profiling of the developing and mature Nrl-/- mouse retina: identification of retinal disease candidates and transcriptional regulatory targets of Nrl. Hum Mol Genet 2004, 13:1487-503. doi:10.1093/hmg/ddh160
  • [42]Corbo JC, Lawrence KA, Karlstetter M, Myers CA, Abdelaziz M, Dirkes W, et al.: CRX ChIP-seq reveals the cis-regulatory architecture of mouse photoreceptors. Genome Res 2010, 20:1512-25. doi:10.1101/gr.109405.110
  • [43]Hao H, Kim DS, Klocke B, Johnson KR, Cui K, Gotoh N, et al.: Transcriptional regulation of rod photoreceptor homeostasis revealed by in vivo NRL targetome analysis. PLoS Genet 2012, 8:e1002649. doi:10.1371/journal.pgen.1002649
  • [44]Brzezinski JAT, Kim EJ, Johnson JE, Reh TA: Ascl1 expression defines a subpopulation of lineage-restricted progenitors in the mammalian retina. Development 2011, 138:3519-31. doi:10.1242/dev.064006
  • [45]Roger JE, Hiriyanna A, Gotoh N, Hao H, Cheng DF, Ratnapriya R, et al.: OTX2 loss causes rod differentiation defect in CRX-associated congenital blindness. J Clin Invest 2014, 124:631-43. doi:10.1172/JCI72722
  • [46]Hsiau TH, Diaconu C, Myers CA, Lee J, Cepko CL, Corbo JC: The cis-regulatory logic of the mammalian photoreceptor transcriptional network. PLoS One 2007, 2:e643. doi:10.1371/journal.pone.0000643
  • [47]Rao RC, Hennig AK, Malik MT, Chen DF, Chen S: Epigenetic regulation of retinal development and disease. J Ocul Biol Dis Infor 2011, 4:121-36. doi:10.1007/s12177-012-9083-0
  • [48]Mumm JS, Godinho L, Morgan JL, Oakley DM, Schroeter EH, Wong RO: Laminar circuit formation in the vertebrate retina. Prog Brain Res 2005, 147:155-69. doi:10.1016/S0079-6123(04)47012-5
  • [49]Tetreault N, Champagne MP, Bernier G: The LIM homeobox transcription factor Lhx2 is required to specify the retina field and synergistically cooperates with Pax6 for Six6 trans-activation. Dev Biol 2009, 327:541-50. doi:10.1016/j.ydbio.2008.12.022
  • [50]Kim DS, Matsuda T, Cepko CL: A core paired-type and POU homeodomain-containing transcription factor program drives retinal bipolar cell gene expression. J Neurosci 2008, 28:7748-64. doi:10.1523/JNEUROSCI.0397-08.2008
  • [51]Nishida A, Furukawa A, Koike C, Tano Y, Aizawa S, Matsuo I, et al.: Otx2 homeobox gene controls retinal photoreceptor cell fate and pineal gland development. Nat Neurosci 2003, 6:1255-63. doi:10.1038/nn1155
  • [52]Kurokawa D, Kiyonari H, Nakayama R, Kimura-Yoshida C, Matsuo I, Aizawa S: Regulation of Otx2 expression and its functions in mouse forebrain and midbrain. Development 2004, 131:3319-31. doi:10.1242/dev.01220
  • [53]Emerson MM, Cepko CL: Identification of a retina-specific Otx2 enhancer element active in immature developing photoreceptors. Dev Biol 2011, 360:241-55. doi:10.1016/j.ydbio.2011.09.012
  • [54]Reissner C, Klose M, Fairless R, Missler M: Mutational analysis of the neurexin/neuroligin complex reveals essential and regulatory components. Proc Natl Acad Sci U S A 2008, 105:15124-9. doi:10.1073/pnas.0801639105
  • [55]Runkel F, Rohlmann A, Reissner C, Brand SM, Missler M: Promoter-like sequences regulating transcriptional activity in neurexin and neuroligin genes. J Neurochem 2013, 127:36-47. doi:10.1111/jnc.12372
  • [56]Maurano MT, Humbert R, Rynes E, Thurman RE, Haugen E, Wang H, et al.: Systematic localization of common disease-associated variation in regulatory DNA. Science 2012, 337:1190-5. doi:10.1126/science.1222794
  • [57]Telese F, Gamliel A, Skowronska-Krawczyk D, Garcia-Bassets I, Rosenfeld MG: “Seq-ing” insights into the epigenetics of neuronal gene regulation. Neuron 2013, 77:606-23. doi:10.1016/j.neuron.2013.01.034
  • [58]Vierstra J, Wang H, John S, Sandstrom R, Stamatoyannopoulos JA: Coupling transcription factor occupancy to nucleosome architecture with DNase-FLASH. Nat Methods 2014, 11:66-72. doi:10.1038/nmeth.2713
  • [59]Visel A, Blow MJ, Li Z, Zhang T, Akiyama JA, Holt A, et al.: ChIP-seq accurately predicts tissue-specific activity of enhancers. Nature 2009, 457:854-8. doi:10.1038/nature07730
  • [60]Neph S, Stergachis AB, Reynolds A, Sandstrom R, Borenstein E, Stamatoyannopoulos JA: Circuitry and dynamics of human transcription factor regulatory networks. Cell 2012, 150:1274-86. doi:10.1016/j.cell.2012.04.040
  • [61]Langmead B, Trapnell C, Pop M, Salzberg SL: Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol 2009, 10:R25. doi:10.1186/gb-2009-10-3-r25 BioMed Central Full Text
  • [62]Neph S, Kuehn MS, Reynolds AP, Haugen E, Thurman RE, Johnson AK, et al.: BEDOPS: high-performance genomic feature operations. Bioinformatics 2012, 28:1919-20. doi:10.1093/bioinformatics/bts277
  • [63]Matys V, Kel-Margoulis OV, Fricke E, Liebich I, Land S, Barre-Dirrie A, et al.: TRANSFAC and its module TRANSCompel: transcriptional gene regulation in eukaryotes. Nucleic Acids Res 2006, 34:D108-10. doi:10.1093/nar/gkj143
  • [64]Bryne JC, Valen E, Tang MH, Marstrand T, Winther O, da Piedade I, et al.: JASPAR, the open access database of transcription factor-binding profiles: new content and tools in the 2008 update. Nucleic Acids Res 2008, 36:D102-6. doi:10.1093/nar/gkm955
  • [65]Newburger DE, Bulyk ML: UniPROBE: an online database of protein binding microarray data on protein-DNA interactions. Nucleic Acids Res 2009, 37:D77-82. doi:10.1093/nar/gkn660
  • [66]Lein ES, Hawrylycz MJ, Ao N, Ayres M, Bensinger A, Bernard A, et al.: Genome-wide atlas of gene expression in the adult mouse brain. Nature 2007, 445:168-76. doi:10.1038/nature05453
  文献评价指标  
  下载次数:29次 浏览次数:3次