期刊论文详细信息
International Journal of Health Geographics
Modeling tools for dengue risk mapping - a systematic review
Peter Dambach4  Yesim Tozan2  Annelies Wilder-Smith1  Pitcha Ratanawong4  Olaf Horstick4  Revati Phalkey3  Valérie R Louis4 
[1] Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore;Department of Nutrition, Food Studies and Public Health, Steinhardt School of Culture, Education and Human Development, New York University, New York, NY, USA;Division of Epidemiology and Public Health, Nottingham Medical School, University of Nottingham, Nottingham, UK;Institute of Public Health, Heidelberg University Medical School, Heidelberg, Germany
关键词: Land cover;    Spatial;    GIS;    Remote sensing;    Dengue control;    Surveillance;    Prediction;    Risk mapping;    Systematic review;    Dengue;   
Others  :  1135986
DOI  :  10.1186/1476-072X-13-50
 received in 2014-09-24, accepted in 2014-11-30,  发布年份 2014
PDF
【 摘 要 】

Introduction

The global spread and the increased frequency and magnitude of epidemic dengue in the last 50 years underscore the urgent need for effective tools for surveillance, prevention, and control. This review aims at providing a systematic overview of what predictors are critical and which spatial and spatio-temporal modeling approaches are useful in generating risk maps for dengue.

Methods

A systematic search was undertaken, using the PubMed, Web of Science, WHOLIS, Centers for Disease Control and Prevention (CDC) and OvidSP databases for published citations, without language or time restrictions. A manual search of the titles and abstracts was carried out using predefined criteria, notably the inclusion of dengue cases. Data were extracted for pre-identified variables, including the type of predictors and the type of modeling approach used for risk mapping.

Results

A wide variety of both predictors and modeling approaches was used to create dengue risk maps. No specific patterns could be identified in the combination of predictors or models across studies. The most important and commonly used predictors for the category of demographic and socio-economic variables were age, gender, education, housing conditions and level of income. Among environmental variables, precipitation and air temperature were often significant predictors. Remote sensing provided a source of varied land cover data that could act as a proxy for other predictor categories. Descriptive maps showing dengue case hotspots were useful for identifying high-risk areas. Predictive maps based on more complex methodology facilitated advanced data analysis and visualization, but their applicability in public health contexts remains to be established.

Conclusions

The majority of available dengue risk maps was descriptive and based on retrospective data. Availability of resources, feasibility of acquisition, quality of data, alongside available technical expertise, determines the accuracy of dengue risk maps and their applicability to the field of public health. A large number of unknowns, including effective entomological predictors, genetic diversity of circulating viruses, population serological profile, and human mobility, continue to pose challenges and to limit the ability to produce accurate and effective risk maps, and fail to support the development of early warning systems.

【 授权许可】

   
2014 Louis et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150311092859567.pdf 1675KB PDF download
Figure 5. 28KB Image download
Figure 4. 41KB Image download
Figure 3. 68KB Image download
Figure 2. 91KB Image download
Figure 1. 45KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

【 参考文献 】
  • [1]WHO: Dengue and severe dengue. http://www.who.int/mediacentre/factsheets/fs117/en/ webcite
  • [2]Cattand P, Desjeux P, Guzmán MG, Jannin J, Kroeger A, Medici A, Musgrove P, Nathan MB, Shaw A, Schofield CJ: Tropical Diseases Lacking Adequate Control Measures: Dengue, Leishmaniasis, and African Trypanosomiasis. In Disease Control Priorities in Developing Countries. 2nd edition. Edited by Jamison DT, Breman JG, Measham AR, Alleyne G, Claeson M, Evans DB, Jha P, Mills A, Musgrove P. Washington (DC): World Bank; 2006.
  • [3]Wilder-Smith A, Gubler DJ: Geographic expansion of dengue: the impact of international travel. Med Clin North Am 2008, 92:1377-1390.
  • [4]Aström C, Rocklöv J, Hales S, Béguin A, Louis V, Sauerborn R: Potential distribution of dengue fever under scenarios of climate change and economic development. Ecohealth 2012, 9:448-454.
  • [5]Banu S, Hu W, Hurst C, Tong S: Dengue transmission in the Asia-Pacific region: impact of climate change and socio-environmental factors. Trop Med Int Health 2011, 16:598-607.
  • [6]Ostfeld RS, Glass GE, Keesing F: Spatial epidemiology: an emerging (or re-emerging) discipline. Trends Ecol Evol (Amst) 2005, 20:328-336.
  • [7]Liberati A, Altman DG, Tetzlaff J, Mulrow C, Gøtzsche PC, Ioannidis JPA, Clarke M, Devereaux PJ, Kleijnen J, Moher D: The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate health care interventions: explanation and elaboration. J Clin Epidemiol 2009, 62:e1-e34.
  • [8]Bhatt S, Gething PW, Brady OJ, Messina JP, Farlow AW, Moyes CL, Drake JM, Brownstein JS, Hoen AG, Sankoh O, Myers MF, George DB, Jaenisch T, Wint GRW, Simmons CP, Scott TW, Farrar JJ, Hay SI: The global distribution and burden of dengue. Nature 2013, 496:504-507.
  • [9]Caprara A, Lima JW, Marinho ACP, Calvasina PG, Landim LP, Sommerfeld J: Irregular water supply, household usage and dengue: a bio-social study in the Brazilian Northeast. Cad Saude Publica 2009, 25:S125-S136.
  • [10]Syed M, Saleem T, Syeda U-R, Habib M, Zahid R, Bashir A, Rabbani M, Khalid M, Iqbal A, Rao EZ, Shujja-ur-Rehman ᅟ, Saleem S: Knowledge, attitudes and practices regarding dengue fever among adults of high and low socioeconomic groups. J Pak Med Assoc 2010, 3:243-7.
  • [11]Hii YL, Zhu H, Ng N, Ng LC, Rocklov J: Forecast of Dengue Incidence Using Temperature and Rainfall. Plos Neglect Trop Dis 2012, 6:e1908.
  • [12]Boyer S, Foray C, Dehecq J-S: Spatial and temporal heterogeneities of Aedes albopictus density in La Reunion Island: rise and weakness of entomological indices. PLoS One 2014, 9:e91170.
  • [13]Machault V, Vignolles C, Pagès F, Gadiaga L, Tourre YM, Gaye A, Sokhna C, Trape J-F, Lacaux J-P, Rogier C: Risk mapping of Anopheles gambiae s.l. densities using remotely-sensed environmental and meteorological data in an urban area: Dakar, Senegal. PLoS One 2012, 7:e50674.
  • [14]Dambach P, Machault V, Lacaux JP, Vignolles C, Sie A, Sauerborn R: Utilization of combined remote sensing techniques to detect environmental variables influencing malaria vector densities in rural West Africa. Int J Health Geogr 2012, 11(1476-072X (Electronic)):8-20.
  • [15]Thomas CJ, Lindsay SW: Local-scale variation in malaria infection amongst rural Gambian children estimated by satellite remote sensing. Trans R Soc Trop Med Hyg 2000, 94:159-163.
  • [16]Jancloes M, Thomson M, Costa MM, Hewitt C, Corvalan C, Dinku T, Lowe R, Hayden M: Climate Services to Improve Public Health. Int J Environ Res Public Health 2014, 11:4555-4559.
  • [17]Barrera R, Amador M, Clark GG: Use of the pupal survey technique for measuring Aedes aegypti (Diptera : Culicidae) productivity in Puerto Rico. Am J Trop Med Hyg 2006, 74:290-302.
  • [18]Troyo A, Fuller DO, Calderón-Arguedas O, Solano ME, Beier JC: Urban structure and dengue fever in Puntarenas, Costa Rica. Singap J Trop Geogr 2009, 30:265-282.
  • [19]Raghwani J, Rambaut A, Holmes EC, Hang VT, Hien TT, Farrar J, Wills B, Lennon NJ, Birren BW, Henn MR, Simmons CP: Endemic dengue associated with the co-circulation of multiple viral lineages and localized density-dependent transmission. PLoS Pathog 2011, 7:e1002064.
  • [20]Reiner RC, Stoddard ST, Forshey BM, King AA, Ellis AM, Lloyd AL, Long KC, Rocha C, Vilcarromero S, Astete H, Bazan I, Lenhart A, Vazquez-Prokopec GM, Paz-Soldan VA, McCall PJ, Kitron U, Elder JP, Halsey ES, Morrison AC, Kochel TJ, Scott TW: Time-varying, serotype-specific force of infection of dengue virus. Proc Natl Acad Sci U S A 2014, 111:e2694.
  • [21]Liebman KA, Stoddard ST, Reiner RC, Perkins TA, Astete H, Sihuincha M, Halsey ES, Kochel TJ, Morrison AC, Scott TW: Determinants of Heterogeneous Blood Feeding Patterns by Aedes aegypti in Iquitos Peru. Plos Neglect Trop Dis 2014, 8:e2702.
  • [22]Runge-Ranzinger S, McCall PJ, Kroeger A, Horstick O: Dengue disease surveillance: an updated systematic literature review. Trop Med Int Health 2014, 19:1116-1160.
  • [23]De Simone TS, Nogueira RMR, Araújo ESM, Guimarães FR, Santos FB, Schatzmayr HG, Souza RV, Teixeira Filho G, Miagostovich MP: Dengue virus surveillance: the co-circulation of DENV-1, DENV-2 and DENV-3 in the State of Rio de Janeiro, Brazil. Trans R Soc Trop Med Hyg 2004, 98:553-562.
  • [24]Barmak DH, Dorso CO, Otero M, Solari HG: Dengue epidemics and human mobility. Phys Rev E Stat Nonlin Soft Matter Phys 2011, 84(1 Pt 1):011901.
  • [25]Adams B, Kapan DD: Man Bites Mosquito: Understanding the Contribution of Human Movement to Vector-Borne Disease Dynamics. PLoS One 2009, 4:e6763.
  • [26]Nevai AL, Soewono E: A model for the spatial transmission of dengue with daily movement between villages and a city. Math Med Biol 2013, 30:dqt002.
  • [27]Stoddard ST, Forshey BM, Morrison AC, Paz-Soldan VA, Vazquez-Prokopec GM, Astete H, Reiner RC Jr, Vilcarromero S, Elder JP, Halsey ES, Kochel TJ, Kitron U, Scott TW: House-to-house human movement drives dengue virus transmission. Proc Natl Acad Sci U S A 2013, 110:994-999.
  • [28]Reiner RC, Stoddard ST, Scott TW: Socially structured human movement shapes dengue transmission despite the diffusive effect of mosquito dispersal. Epidemics 2014, 6:30-36.
  • [29]Schneider CM, Belik V, Couronné T, Smoreda Z, González MC: Unravelling daily human mobility motifs. J R Soc Interface 2013, 10:20130246.
  • [30]Salje H, Lessler J, Endy TP, Curriero FC, Gibbons RV, Nisalak A, Nimmannitya S, Kalayanarooj S, Jarman RG, Thomas SJ, Burke DS, Cummings DAT: Revealing the microscale spatial signature of dengue transmission and immunity in an urban population. Proc Natl Acad Sci 2012, 109:9535-9538.
  • [31]Smith DL, Perkins TA, Reiner RC, Barker CM, Niu T, Chaves LF, Ellis AM, George DB, Le Menach A, Pulliam JRC, Bisanzio D, Buckee C, Chiyaka C, Cummings DAT, Garcia AJ, Gatton ML, Gething PW, Hartley DM, Johnston G, Klein EY, Michael E, Lloyd AL, Pigott DM, Reisen WK, Ruktanonchai N, Singh BK, Stoller J, Tatem AJ, Kitron U, Godfray HCJ, et al.: Recasting the theory of mosquito-borne pathogen transmission dynamics and control. Trans R Soc Trop Med Hyg 2014, 108:185-197.
  • [32]Lowe R, Barcellos C, Coelho CAS, Bailey TC, Coelho GE, Graham R, Jupp T, Ramalho WM, Carvalho MS, Stephenson DB, Rodó X: Dengue outlook for the World Cup in Brazil: an early warning model framework driven by real-time seasonal climate forecasts. Lancet Infect Dis 2014, 14:619-626.
  • [33]Runge-Ranzinger S, Horstick O, Marx M, Kroeger A: What does dengue disease surveillance contribute to predicting and detecting outbreaks and describing trends? Trop Med Int Health 2008, 13:1022-1041.
  • [34]Kolivras KN: Changes in dengue risk potential in Hawaii, USA, due to climate variability and change. Clim Res 2010, 42:1-11.
  • [35]Lowe R, Bailey TC, Stephenson DB, Jupp TE, Graham RJ, Barcellos C, Carvalho MS: The development of an early warning system for climate-sensitive disease risk with a focus on dengue epidemics in Southeast Brazil. Stat Med 2013, 32:864-883.
  • [36]Horstick O, Runge-Ranzinger S, Nathan MB, Kroeger A: Dengue vector-control services: how do they work? A systematic literature review and country case studies. Trans R Soc Trop Med Hyg 2010, 104:379-386.
  • [37]Naish S, Dale P, Mackenzie JS, McBride J, Mengersen K, Tong S: Climate change and dengue: a critical and systematic review of quantitative modelling approaches. BMC Infect Dis 2014, 14:167. BioMed Central Full Text
  • [38]Attaway DF, Jacobsen KH, Falconer A, Manca G, Waters NM: Assessing the methods needed for improved dengue mapping: a SWOT analysis. Pan Afr Med J 2014, 17:289.
  • [39]Wilder-Smith A, Renhorn K-E, Tissera H, Bakar SA, Alphey L, Kittayapong P, Lindsay S, Logan J, Hatz C, Reiter P: DengueTools: innovative tools and strategies for the surveillance and control of dengue. Global health action 2012, 5:17273.
  文献评价指标  
  下载次数:81次 浏览次数:68次