期刊论文详细信息
Gut Pathogens
Commensal Clostridia: leading players in the maintenance of gut homeostasis
Antonio Gasbarrini2  Valentina Petito2  Franco Scaldaferri2  Loris R Lopetuso1 
[1] Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA;Department of Internal Medicine, Gastroenterology Division, Catholic University of Rome, Policlinico “A. Gemelli” Hospital, Roma 00168, Italia
关键词: Gut homeostasis;    Dysbiosis;    Clostridia spp;    Gut microbiota;   
Others  :  821202
DOI  :  10.1186/1757-4749-5-23
 received in 2013-07-10, accepted in 2013-08-01,  发布年份 2013
PDF
【 摘 要 】

The gastrointestinal tract is a complex and dynamic network where an intricate and mutualistic symbiosis modulates the relationship between the host and the microbiota in order to establish and ensure gut homeostasis. Commensal Clostridia consist of gram-positive, rod-shaped bacteria in the phylum Firmicutes and make up a substantial part of the total bacteria in the gut microbiota. They start to colonize the intestine of breastfed infants during the first month of life and populate a specific region in the intestinal mucosa in close relationship with intestinal cells. This position allows them to participate as crucial factors in modulating physiologic, metabolic and immune processes in the gut during the entire lifespan, by interacting with the other resident microbe populations, but also by providing specific and essential functions. This review focus on what is currently known regarding the role of commensal Clostridia in the maintenance of overall gut function, as well as touch on their potential contribution in the unfavorable alteration of microbiota composition (dysbiosis) that has been implicated in several gastrointestinal disorders. Commensal Clostridia are strongly involved in the maintenance of overall gut function. This leads to important translational implications in regard to the prevention and treatment of dysbiosis, to drug efficacy and toxicity, and to the development of therapies that may modulate the composition of the microflora, capitalizing on the key role of commensal Clostridia, with the end goal of promoting gut health.

【 授权许可】

   
2013 Lopetuso et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20140712070526500.pdf 492KB PDF download
Figure 1. 43KB Image download
【 图 表 】

Figure 1.

【 参考文献 】
  • [1]Walker WA, Wu M, Isselbacher KJ, Bloch KJ: Intestinal uptake of macromolecules. III. Studies on the mechanism by which immunization interferes with antigen uptake. J Immunol 1975, 115:854-861.
  • [2]Walker WA, Wu M, Isselbacher KJ, Bloch KJ: Intestinal uptake of macromolecules. IV.--The effect of pancreatic duct ligation on the breakdown of antigen and antigen-antibody complexes on the intestinal surface. Gastroenterology 1975, 69:1223-1229.
  • [3]Leser TD, Molbak L: Better living through microbial action: the benefits of the mammalian gastrointestinal microbiota on the host. Environ Microbiol 2009, 11:2194-2206.
  • [4]Neish AS: Microbes in gastrointestinal health and disease. Gastroenterology 2009, 136:65-80.
  • [5]Eckburg PB, Bik EM, Bernstein CN, Purdom E, Dethlefsen L, Sargent M, Gill SR, Nelson KE, Relman DA: Diversity of the human intestinal microbial flora. Science 2005, 308:1635-1638.
  • [6]Gill SR, Pop M, Deboy RT, Eckburg PB, Turnbaugh PJ, Samuel BS, Gordon JI, Relman DA, Fraser-Liggett CM, Nelson KE: Metagenomic analysis of the human distal gut microbiome. Science 2006, 312:1355-1359.
  • [7]Scanlan PD, Marchesi JR: Micro-eukaryotic diversity of the human distal gut microbiota: qualitative assessment using culture-dependent and -independent analysis of faeces. ISME J 2008, 2:1183-1193.
  • [8]Zhang T, Breitbart M, Lee WH, Run JQ, Wei CL, Soh SW, Hibberd ML, Liu ET, Rohwer F, Ruan Y: RNA viral community in human feces: prevalence of plant pathogenic viruses. PLoS Biol 2006, 4:e3.
  • [9]Breitbart M, Haynes M, Kelley S, Angly F, Edwards RA, Felts B, Mahaffy JM, Mueller J, Nulton J, Rayhawk S, et al.: Viral diversity and dynamics in an infant gut. Res Microbiol 2008, 159:367-373.
  • [10]Hold GL, Pryde SE, Russell VJ, Furrie E, Flint HJ: Assessment of microbial diversity in human colonic samples by 16S rDNA sequence analysis. FEMS Microbiol Ecol 2002, 39:33-39.
  • [11]Backhed F, Ley RE, Sonnenburg JL, Peterson DA, Gordon JI: Host-bacterial mutualism in the human intestine. Science 2005, 307:1915-1920.
  • [12]Ley RE, Backhed F, Turnbaugh P, Lozupone CA, Knight RD, Gordon JI: Obesity alters gut microbial ecology. Proc Natl Acad Sci U S A 2005, 102:11070-11075.
  • [13]Ley RE, Peterson DA, Gordon JI: Ecological and evolutionary forces shaping microbial diversity in the human intestine. Cell 2006, 124:837-848.
  • [14]Frank DN, St Amand AL, Feldman RA, Boedeker EC, Harpaz N, Pace NR: Molecular-phylogenetic characterization of microbial community imbalances in human inflammatory bowel diseases. Proc Natl Acad Sci U S A 2007, 104:13780-13785.
  • [15]Rajilic-Stojanovic M, Smidt H, de Vos WM: Diversity of the human gastrointestinal tract microbiota revisited. Environ Microbiol 2007, 9:2125-2136.
  • [16]Tap J, Mondot S, Levenez F, Pelletier E, Caron C, Furet JP, Ugarte E, Munoz-Tamayo R, Paslier DL, Nalin R, et al.: Towards the human intestinal microbiota phylogenetic core. Environ Microbiol 2009, 11:2574-2584.
  • [17]Manson JM, Rauch M, Gilmore MS: The commensal microbiology of the gastrointestinal tract. Adv Exp Med Biol 2008, 635:15-28.
  • [18]McCracken VJ, Lorenz RG: The gastrointestinal ecosystem: a precarious alliance among epithelium, immunity and microbiota. Cell Microbiol 2001, 3:1-11.
  • [19]Lievin-Le Moal V, Servin AL: The front line of enteric host defense against unwelcome intrusion of harmful microorganisms: mucins, antimicrobial peptides, and microbiota. Clin Microbiol Rev 2006, 19:315-337.
  • [20]Scaldaferri F, Pizzoferrato M, Gerardi V, Lopetuso L, Gasbarrini A: The gut barrier: new acquisitions and therapeutic approaches. J Clin Gastroenterol 2012, 46(Suppl):S12-S17.
  • [21]Sekirov I, Russell SL, Antunes LC, Finlay BB: Gut mircobiota in health and disease. Physiol Rev 2010, 90:859-904.
  • [22]Silva AM, Barbosa FHF, Duarte R, et al.: Effect of Bifidobacterium longum ingestion on experimental salmonellosis in mice. J Appl Microbiol 2004, 97:29-37.
  • [23]Truusalu K, Rea M: Eradication of Salmonella Typhimurium infection in a murine model of typhoid fever with the cimbination of probiotic Lactobacillus fermentum ME-3 and ofloxacin. BMC Microbiol 2008, 8:132. BioMed Central Full Text
  • [24]Searle LE, Best A, Nunez A, Salguero FJ, Johnson L, Weyer U, Dugdale AH, Cooley WA, Carter B, Jones G, et al.: A mixture containing galactooligosaccharide, produced by the enzymic activity of Bifidobacterium bifidum, reduces Salmonella enterica serovar Typhimurium infection in mice. J Med Microbiol 2009, 58:37-48.
  • [25]Martens EC, Roth R: Coordinate regulation of glycan degradation and polysaccharide capsule biosynthesis by a prominent gut symbiont. J Biol Chem 2009, 284:18445-18457.
  • [26]Burger van Paassen N, VAea: The regulation of intestinal mucin MUC2 expression by short chain fatty acid: implications for epithelial pretection. Biochem J 2009, 420:211-219.
  • [27]Dharmani P, SVea: Role of intestinal mucins in annate host defense mechanisms against pathogens. J Innamte Immun 2009, 1:123-135.
  • [28]Galdeano CM, Perdigon G: The probiotic bacterium Lactobacillus casei induces activation of the gut mucosal immune system through innate immunity. Clin Vaccine Immunol 2006, 13:219-226.
  • [29]Leblanc J, Fliss I, Matar C: Induction of a humoral immune response following an Escherichia coli O157:H7 infection with an immunomodulatory peptidic fraction derived from Lactobacillus helveticus-fermented milk. Clin Diagn Lab Immunol 2004, 11:1171-1181.
  • [30]Allen CA, Torres AG: Host-microbe communication within the GI tract. Adv Exp Med Biol 2008, 635:93-101.
  • [31]Swidsinski A, Ladhoff A, Pernthaler A, Swidsinski S, Loening-Baucke V, Ortner M, Weber J, Hoffmann U, Schreiber S, Dietel M, Lochs H: Mucosal flora in inflammatory bowel disease. Gastroenterology 2002, 122:44-54.
  • [32]Hill DA, Artis D: Intestinal bacteria and the regulation of immune cell homeostasis. Annu Rev Immunol 2010, 28:623-667.
  • [33]Sartor RB: Microbial influences in inflammatory bowel diseases. Gastroenterology 2008, 134:577-594.
  • [34]Camilleri M, Madsen K, Spiller R, Greenwood-Van Meerveld B, Verne GN: Intestinal barrier function in health and gastrointestinal disease. Neurogastroenterol Motil 2012, 24:503-512.
  • [35]Fasano A: Leaky gut and autoimmune diseases. Clin Rev Allergy Immunol 2012, 42:71-78.
  • [36]Fasano A: Zonulin and its regulation of intestinal barrier function: the biological door to inflammation, autoimmunity, and cancer. Physiol Rev 2011, 91:151-175.
  • [37]Kelly D, Conway S, Aminov R: Commensal gut bacteria: mechanisms of immune modulation. Trends Immunol 2005, 26:326-333.
  • [38]Kaper JB, Sperandio V: Bacterial cell-to-cell signaling in the gastrointestinal tract. Infect Immun 2005, 73:3197-3209.
  • [39]Young VB, Schmidt TM: Overview of the gastrointestinal microbiota. Adv Exp Med Biol 2008, 635:29-40.
  • [40]Collins MD, Lawson PA, Willems A, Cordoba JJ, Fernandez-Garayzabal J, Garcia P, Cai J, Hippe H, Farrow JA: The phylogeny of the genus Clostridium: proposal of five new genera and eleven new species combinations. Int J Syst Bacteriol 1994, 44:812-826.
  • [41]Roberts AK, Chierici R, Sawatzki G, Hill MJ, Volpato S, Vigi V: Supplementation of an adapted formula with bovine lactoferrin: 1. Effect on the infant faecal flora. Acta Paediatr 1992, 81:119-124.
  • [42]Jost T, Lacroix C, Braegger CP, Chassard C: New insights in gut microbiota establishment in healthy breast fed neonates. PLoS One 2012, 7:e44595.
  • [43]Orrhage K, Nord CE: Factors controlling the bacterial colonization of the intestine in breastfed infants. Acta Paediatr Suppl 1999, 88:47-57.
  • [44]Mikelsaar M, Stsepetova J, Hutt P, Kolk H, Sepp E, Loivukene K, Zilmer K, Zilmer M: Intestinal Lactobacillus sp. is associated with some cellular and metabolic characteristics of blood in elderly people. Anaerobe 2010, 16:240-246.
  • [45]Makivuokko H, Tiihonen K, Tynkkynen S, Paulin L, Rautonen N: The effect of age and non-steroidal anti-inflammatory drugs on human intestinal microbiota composition. Br J Nutr 2010, 103:227-234.
  • [46]Zhao L, Xu W, Ibrahim SA, Jin J, Feng J, Jiang J, Meng J, Ren F: Effects of age and region on fecal microflora in elderly subjects living in Bama, Guangxi, China. Curr Microbiol 2011, 62:64-70.
  • [47]Mariat D, Firmesse O, Levenez F, Guimaraes V, Sokol H, Dore J, Corthier G, Furet JP: The Firmicutes/Bacteroidetes ratio of the human microbiota changes with age. BMC Microbiol 2009, 9:123. BioMed Central Full Text
  • [48]Biagi E, Candela M, Fairweather-Tait S, Franceschi C, Brigidi P: Aging of the human metaorganism: the microbial counterpart. Age (Dordr) 2012, 34:247-267.
  • [49]Drago L, Toscano M, Rodighiero V, De Vecchi E, Mogna G: Cultivable and pyrosequenced fecal microflora in centenarians and young subjects. J Clin Gastroenterol 2012, 46(Suppl):S81-S84.
  • [50]Nava GM, Friedrichsen HJ, Stappenbeck TS: Spatial organization of intestinal microbiota in the mouse ascending colon. ISME J 2011, 5:627-638.
  • [51]Hummel KP, Richardson FL, Fekete E: Anatomy. In Biology of the Laboratory Mouse. Edited by McGraw-Hill, Green EL. New York: BMC Microbiol; 2009.
  • [52]Sonnenburg JL, Angenent LT, Gordon JI: Getting a grip on things: how do communities of bacterial symbionts become established in our intestine? Nat Immunol 2004, 5:569-573.
  • [53]Cario E, Gerken G, Podolsky DK: Toll-like receptor 2 enhances ZO-1-associated intestinal epithelial barrier integrity via protein kinase C. Gastroenterology 2004, 127:224-238.
  • [54]Tlaskalova-Hogenova H, Stepankova R, Hudcovic T, Tuckova L, Cukrowska B, Lodinova-Zadnikova R, Kozakova H, Rossmann P, Bartova J, Sokol D, et al.: Commensal bacteria (normal microflora), mucosal immunity and chronic inflammatory and autoimmune diseases. Immunol Lett 2004, 93:97-108.
  • [55]Pryde SE, Duncan SH, Hold GL, Stewart CS, Flint HJ: The microbiology of butyrate formation in the human colon. FEMS Microbiol Lett 2002, 217:133-139.
  • [56]Clausen MR, Mortensen PB: Kinetic studies on colonocyte metabolism of short chain fatty acids and glucose in ulcerative colitis. Gut 1995, 37:684-689.
  • [57]Ritzhaupt A, Ellis A, Hosie KB, Shirazi-Beechey SP: The characterization of butyrate transport across pig and human colonic luminal membrane. J Physiol 1998, 507(Pt 3):819-830.
  • [58]Scheppach W, Luehrs H, Menzel T: Beneficial health effects of low-digestible carbohydrate consumption. Br J Nutr 2001, 85(Suppl 1):S23-S30.
  • [59]Mortensen PB, Clausen MR: Short-chain fatty acids in the human colon: relation to gastrointestinal health and disease. Scand J Gastroenterol Suppl 1996, 216:132-148.
  • [60]Csordas A: Butyrate, aspirin and colorectal cancer. Eur J Cancer Prev 1996, 5:221-231.
  • [61]Segain JP, Raingeard de la Bletiere D, Bourreille A, Leray V, Gervois N, Rosales C, Ferrier L, Bonnet C, Blottiere HM, Galmiche JP: Butyrate inhibits inflammatory responses through NFkappaB inhibition: implications for Crohn’s disease. Gut 2000, 47:397-403.
  • [62]Luhrs H, Gerke T, Schauber J, Dusel G, Melcher R, Scheppach W, Menzel T: Cytokine-activated degradation of inhibitory kappaB protein alpha is inhibited by the short-chain fatty acid butyrate. Int J Colorectal Dis 2001, 16:195-201.
  • [63]McIntyre A, Gibson PR, Young GP: Butyrate production from dietary fibre and protection against large bowel cancer in a rat model. Gut 1993, 34:386-391.
  • [64]Archer SY, Meng S, Shei A, Hodin RA: p21(WAF1) is required for butyrate-mediated growth inhibition of human colon cancer cells. Proc Natl Acad Sci U S A 1998, 95:6791-6796.
  • [65]Wachtershauser A, Stein J: Rationale for the luminal provision of butyrate in intestinal diseases. Eur J Nutr 2000, 39:164-171.
  • [66]Hague A, Elder DJ, Hicks DJ, Paraskeva C: Apoptosis in colorectal tumour cells: induction by the short chain fatty acids butyrate, propionate and acetate and by the bile salt deoxycholate. Int J Cancer 1995, 60:400-406.
  • [67]Topping DL, Clifton PM: Short-chain fatty acids and human colonic function: roles of resistant starch and nonstarch polysaccharides. Physiol Rev 2001, 81:1031-1064.
  • [68]Ahmad MS, Krishnan S, Ramakrishna BS, Mathan M, Pulimood AB, Murthy SN: Butyrate and glucose metabolism by colonocytes in experimental colitis in mice. Gut 2000, 46:493-499.
  • [69]Roediger WE, Duncan A, Kapaniris O, Millard S: Reducing sulfur compounds of the colon impair colonocyte nutrition: implications for ulcerative colitis. Gastroenterology 1993, 104:802-809.
  • [70]Duncan SH, Barcenilla A, Stewart CS, Pryde SE, Flint HJ: Acetate utilization and butyryl coenzyme A (CoA):acetate-CoA transferase in butyrate-producing bacteria from the human large intestine. Appl Environ Microbiol 2002, 68:5186-5190.
  • [71]Asano Y, Hiramoto T, Nishino R, Aiba Y, Kimura T, Yoshihara K, Koga Y, Sudo N: Critical role of gut microbiota in the production of biologically active, free catecholamines in the gut lumen of mice. Am J Physiol Gastrointest Liver Physiol 2012, 81(3):1031-1064.
  • [72]Li ZS, Schmauss C, Cuenca A, Ratcliffe E, Gershon MD: Physiological modulation of intestinal motility by enteric dopaminergic neurons and the D2 receptor: analysis of dopamine receptor expression, location, development, and function in wild-type and knock-out mice. J Neurosci 2006, 26:2798-2807.
  • [73]Eisenhofer G, Kopin IJ, Goldstein DS: Catecholamine metabolism: a contemporary view with implications for physiology and medicine. Pharmacol Rev 2004, 56:331-349.
  • [74]Nakano K, Yamaoka K, Hanami K, Saito K, Sasaguri Y, Yanagihara N, Tanaka S, Katsuki I, Matsushita S, Tanaka Y: Dopamine induces IL-6-dependent IL-17 production via D1-like receptor on CD4 naive T cells and D1-like receptor antagonist SCH-23390 inhibits cartilage destruction in a human rheumatoid arthritis/SCID mouse chimera model. J Immunol 2011, 186:3745-3752.
  • [75]Sarkar C, Basu B, Chakroborty D, Dasgupta PS, Basu S: The immunoregulatory role of dopamine: an update. Brain Behav Immun 2010, 24:525-528.
  • [76]Barry MK, Aloisi JD, Pickering SP, Yeo CJ: Luminal adrenergic agents modulate ileal transport: discrimination between alpha 1 and alpha 2 receptors. Am J Surg 1994, 167:156-162.
  • [77]Barry MK, Maher MM, Gontarek JD, Jimenez RE, Yeo CJ: Luminal dopamine modulates canine ileal water and electrolyte transport. Dig Dis Sci 1995, 40:1738-1743.
  • [78]Umesaki Y, Setoyama H, Matsumoto S, Imaoka A, Itoh K: Differential roles of segmented filamentous bacteria and clostridia in development of the intestinal immune system. Infect Immun 1999, 67:3504-3511.
  • [79]Lefrancois L, Goodman T: In vivo modulation of cytolytic activity and Thy-1 expression in TCR-gamma delta+ intraepithelial lymphocytes. Science 1989, 243:1716-1718.
  • [80]Umesaki Y, Okada Y, Matsumoto S, Imaoka A, Setoyama H: Segmented filamentous bacteria are indigenous intestinal bacteria that activate intraepithelial lymphocytes and induce MHC class II molecules and fucosyl asialo GM1 glycolipids on the small intestinal epithelial cells in the ex-germ-free mouse. Microbiol Immunol 1995, 39:555-562.
  • [81]Shroff KE, Meslin K, Cebra JJ: Commensal enteric bacteria engender a self-limiting humoral mucosal immune response while permanently colonizing the gut. Infect Immun 1995, 63:3904-3913.
  • [82]Rothkotter HJ, Pabst R: Lymphocyte subsets in jejunal and ileal Peyer’s patches of normal and gnotobiotic minipigs. Immunology 1989, 67:103-108.
  • [83]Itoh K, Mitsuoka T: Characterization of clostridia isolated from faeces of limited flora mice and their effect on caecal size when associated with germ-free mice. Lab Anim 1985, 19:111-118.
  • [84]Fujihashi K, McGhee JR, Yamamoto M, Peschon JJ, Kiyono H: An interleukin-7 internet for intestinal intraepithelial T cell development: knockout of ligand or receptor reveal differences in the immunodeficient state. Eur J Immunol 1997, 27:2133-2138.
  • [85]Watanabe M, Ueno Y, Yajima T, Iwao Y, Tsuchiya M, Ishikawa H, Aiso S, Hibi T, Ishii H: Interleukin 7 is produced by human intestinal epithelial cells and regulates the proliferation of intestinal mucosal lymphocytes. J Clin Invest 1995, 95:2945-2953.
  • [86]McGee DW, Beagley KW, Aicher WK, McGhee JR: Transforming growth factor-beta enhances interleukin-6 secretion by intestinal epithelial cells. Immunology 1992, 77:7-12.
  • [87]Barnard JA, Warwick GJ, Gold LI: Localization of transforming growth factor beta isoforms in the normal murine small intestine and colon. Gastroenterology 1993, 105:67-73.
  • [88]Beagley KW, Eldridge JH, Lee F, Kiyono H, Everson MP, Koopman WJ, Hirano T, Kishimoto T, McGhee JR: Interleukins and IgA synthesis. Human and murine interleukin 6 induce high rate IgA secretion in IgA-committed B cells. J Exp Med 1989, 169:2133-2148.
  • [89]Atarashi K, Tanoue T, Shima T, Imaoka A, Kuwahara T, Momose Y, Cheng G, Yamasaki S, Saito T, Ohba Y, et al.: Induction of colonic regulatory T cells by indigenous Clostridium species. Science 2011, 331:337-341.
  • [90]Littman DR, Rudensky AY: Th17 and regulatory T cells in mediating and restraining inflammation. Cell 2010, 140:845-858.
  • [91]Honda K, Littman DR: The microbiome in infectious disease and inflammation. Annu Rev Immunol 2012, 30:759-795.
  • [92]Feuerer M, Hill JA, Kretschmer K, von Boehmer H, Mathis D, Benoist C: Genomic definition of multiple ex vivo regulatory T cell subphenotypes. Proc Natl Acad Sci U S A 2010, 107:5919-5924.
  • [93]Nagano Y, Itoh K, Honda K: The induction of Treg cells by gut-indigenous Clostridium. Curr Opin Immunol 2012, 24:392-397.
  • [94]Izcue A, Coombes JL, Powrie F: Regulatory T cells suppress systemic and mucosal immune activation to control intestinal inflammation. Immunol Rev 2006, 212:256-271.
  • [95]Barnes MJ, Powrie F: Regulatory T cells reinforce intestinal homeostasis. Immunity 2009, 31:401-411.
  • [96]D’Angelo M, Billings PC, Pacifici M, Leboy PS, Kirsch T: Authentic matrix vesicles contain active metalloproteases (MMP). a role for matrix vesicle-associated MMP-13 in activation of transforming growth factor-beta. J Biol Chem 2001, 276:11347-11353.
  • [97]Geuking MB, Cahenzli J, Lawson MA, Ng DC, Slack E, Hapfelmeier S, McCoy KD, Macpherson AJ: Intestinal bacterial colonization induces mutualistic regulatory T cell responses. Immunity 2011, 34:794-806.
  • [98]Sokol H, Pigneur B, Watterlot L, Lakhdari O, Bermudez-Humaran LG, Gratadoux JJ, Blugeon S, Bridonneau C, Furet JP, Corthier G, et al.: Faecalibacterium prausnitzii is an anti-inflammatory commensal bacterium identified by gut microbiota analysis of Crohn disease patients. Proc Natl Acad Sci U S A 2008, 105:16731-16736.
  • [99]Cong Y, Feng T, Fujihashi K, Schoeb TR, Elson CO: A dominant, coordinated T regulatory cell-IgA response to the intestinal microbiota. Proc Natl Acad Sci U S A 2009, 106:19256-19261.
  • [100]Lathrop SK, Bloom SM, Rao SM, Nutsch K, Lio CW, Santacruz N, Peterson DA, Stappenbeck TS, Hsieh CS: Peripheral education of the immune system by colonic commensal microbiota. Nature 2011, 478:250-254.
  • [101]Willing B, Halfvarson J, Dicksved J, Rosenquist M, Jarnerot G, Engstrand L, Tysk C, Jansson JK: Twin studies reveal specific imbalances in the mucosa-associated microbiota of patients with ileal Crohn’s disease. Inflamm Bowel Dis 2009, 15:653-660.
  • [102]Maurice CF, Haiser HJ, Turnbaugh PJ: Xenobiotics shape the physiology and gene expression of the active human gut microbiome. Cell 2013, 152:39-50.
  文献评价指标  
  下载次数:15次 浏览次数:4次