Gut Pathogens | |
Probiotic Lactobacillus rhamnosus GG mono-association suppresses human rotavirus-induced autophagy in the gnotobiotic piglet intestine | |
Jun Sun2  Xingdong Yang1  Jacob Kocher1  Ke Wen1  Guohua Li1  Fangning Liu1  Yongguo Zhang2  Lijuan Yuan1  Shaoping Wu2  | |
[1] Department of Biomedical Sciences and Pathobiology, Virginia-Maryland Regional College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Integrated Life Science Building, 1981 Kraft Dr, Blacksburg, VA 24061-0913, USA;Department of Biochemistry, Rush University, Cohn Research Building, 1735 W. Harrison Street, Chicago, IL 60612, USA | |
关键词: Rotavirus; Probiotics; Intestinal injury; Intestinal inflammation; Infectious disease; Lactobacillus rhamnosus GG; Gnotobiotic pig; Diarrhea; Apoptosis; Autophagy; | |
Others : 821216 DOI : 10.1186/1757-4749-5-22 |
|
received in 2013-06-16, accepted in 2013-07-25, 发布年份 2013 | |
【 摘 要 】
Background
Human rotavirus (HRV) is the most important cause of severe diarrhea in infants and young children. Probiotic Lactobacillus rhamnosus GG (LGG) reduces rotavirus infection and diarrhea. However, the molecular mechanisms of LGG-mediated protection from rotavirus infection are poorly understood. Autophagy plays an essential role in responses to microbial pathogens. However, the role of autophagy in HRV infection and LGG treatment is unknown. We hypothesize that rotavirus gastroenteritis activates autophagy and that LGG suppresses virus-induced autophagy and prevents intestinal damage in infected piglets.
Methods
We used LGG feeding to combat viral gastroenteritis in the gnotobiotic pig model of virulent HRV infection.
Results
We found that LGG feeding did not increase autophagy, whereas virus infection induced autophagy in the piglet intestine. Virus infection increased the protein levels of the autophagy markers ATG16L1 and Beclin-1 and the autophagy regulator mTOR. LGG treatment during viral gastroenteritis reduced autophagy marker expression to normal levels, induced apoptosis and partially prevented virus-induced tissue damage.
Conclusion
Our study provides new insights into virus-induced autophagy and LGG suppression of uncontrolled autophagy and intestinal injury. A better understanding of the antiviral activity of LGG will lead to novel therapeutic strategies for infant infectious diseases.
【 授权许可】
2013 Wu et al.; licensee BioMed Central Ltd.
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
20140712070657556.pdf | 1399KB | download | |
Figure 5. | 282KB | Image | download |
Figure 4. | 140KB | Image | download |
Figure 3. | 135KB | Image | download |
Figure 2. | 59KB | Image | download |
Figure 1. | 76KB | Image | download |
【 图 表 】
Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
【 参考文献 】
- [1]Reggiori F, Klionsky DJ: Autophagy in the eukaryotic cell. Eukaryot Cell 2002, 1:11-21.
- [2]Kang R, Zeh HJ, Lotze MT, Tang D: The Beclin 1 network regulates autophagy and apoptosis. Cell Death Differ 2011, 18:571-580.
- [3]Rioux JD, Xavier RJ, Taylor KD, Silverberg MS, Goyette P, Huett A, Green T, Kuballa P, Barmada MM, Datta LW, et al.: Genome-wide association study identifies new susceptibility loci for Crohn disease and implicates autophagy in disease pathogenesis. Nat Genet 2007, 39:596-604.
- [4]Parkes M, Barrett JC, Prescott NJ, Tremelling M, Anderson CA, Fisher SA, Roberts RG, Nimmo ER, Cummings FR, Soars D, et al.: Sequence variants in the autophagy gene IRGM and multiple other replicating loci contribute to Crohn’s disease susceptibility. Nat Genet 2007, 39:830-832.
- [5]Godlewski MM, Hallay N, Bierla JB, Zabielski R: Molecular mechanism of programmed cell death in the gut epithelium of neonatal piglets. J Physiol Pharmacol 2007, 58(Suppl 3):97-113.
- [6]Maynard AA, Dvorak K, Khailova L, Dobrenen H, Arganbright KM, Halpern MD, Kurundkar AR, Maheshwari A, Dvorak B: Epidermal growth factor reduces autophagy in intestinal epithelium and in the rat model of necrotizing enterocolitis. Am J Physiol Gastrointest Liver Physiol 2010, 299:G614-G622.
- [7]Crawford SE, Hyser JM, Utama B, Estes MK: Autophagy hijacked through viroporin-activated calcium/calmodulin-dependent kinase kinase-beta signaling is required for rotavirus replication. Proc Natl Acad Sci USA 2012, 109:E3405-E3413.
- [8]Szajewska H, Skorka A, Ruszczynski M, Gieruszczak-Bialek D: Meta-analysis: Lactobacillus GG for treating acute diarrhoea in children. Aliment Pharmacol Ther 2007, 25:871-881.
- [9]Guandalini S: Probiotics for children with diarrhea: an update. J Clin Gastroenterol 2008, 42(Suppl 2):S53-S57.
- [10]Teran CG, Teran-Escalera CN, Villarroel P: Nitazoxanide vs. probiotics for the treatment of acute rotavirus diarrhea in children: a randomized, single-blind, controlled trial in Bolivian children. Int J Infect Dis 2009, 13:518-523.
- [11]Guandalini S: Probiotics for children: use in diarrhea. J Clin Gastroenterol 2006, 40:244-248.
- [12]Rosenfeldt V, Michaelsen KF, Jakobsen M, Larsen CN, Moller PL, Pedersen P, Tvede M, Weyrehter H, Valerius NH, Paerregaard A: Effect of probiotic Lactobacillus strains in young children hospitalized with acute diarrhea. Pediatr Infect Dis J 2002, 21:411-416.
- [13]Guandalini S, Pensabene L, Zikri MA, Dias JA, Casali LG, Hoekstra H, Kolacek S, Massar K, Micetic-Turk D, Papadopoulou A, et al.: Lactobacillus GG administered in oral rehydration solution to children with acute diarrhea: a multicenter European trial. J Pediatr Gastroenterol Nutr 2000, 30:54-60.
- [14]Szajewska H, Wanke M, Patro B: Meta-analysis: the effects of Lactobacillus rhamnosus GG supplementation for the prevention of healthcare-associated diarrhoea in children. Aliment Pharmacol Ther 2011, 34:1079-1087.
- [15]Jaber N, Dou Z, Chen JS, Catanzaro J, Jiang YP, Ballou LM, Selinger E, Ouyang X, Lin RZ, Zhang J, Zong WX: Class III PI3K Vps34 plays an essential role in autophagy and in heart and liver function. Proc Natl Acad Sci USA 2012, 109:2003-2008.
- [16]Donauer J, Schreck I, Liebel U, Weiss C: Role and interaction of p53, BAX and the stress-activated protein kinases p38 and JNK in benzo(a)pyrene-diolepoxide induced apoptosis in human colon carcinoma cells. Arch Toxicol 2012, 86:329-337.
- [17]Dai C, Tang Y, Jung SY, Qin J, Aaronson SA, Gu W: Differential effects on p53-mediated cell cycle arrest vs. apoptosis by p90. Proc Natl Acad Sci USA 2011, 108:18937-18942.
- [18]Oltvai ZN, Milliman CL, Korsmeyer SJ: Bcl-2 heterodimerizes in vivo with a conserved homolog, Bax, that accelerates programmed cell death. Cell 1993, 74:609-619.
- [19]Hsu YT, Wolter KG, Youle RJ: Cytosol-to-membrane redistribution of Bax and Bcl-X(L) during apoptosis. Proc Natl Acad Sci USA 1997, 94:3668-3672.
- [20]Finucane DM, Bossy-Wetzel E, Waterhouse NJ, Cotter TG, Green DR: Bax-induced caspase activation and apoptosis via cytochrome c release from mitochondria is inhibitable by Bcl-xL. J Biol Chem 1999, 274:2225-2233.
- [21]Cregan SP, MacLaurin JG, Craig CG, Robertson GS, Nicholson DW, Park DS, Slack RS: Bax-dependent caspase-3 activation is a key determinant in p53-induced apoptosis in neurons. J Neurosci 1999, 19:7860-7869.
- [22]Zeissig S, Burgel N, Gunzel D, Richter J, Mankertz J, Wahnschaffe U, Kroesen AJ, Zeitz M, Fromm M, Schulzke JD: Changes in expression and distribution of claudin 2, 5 and 8 lead to discontinuous tight junctions and barrier dysfunction in active Crohn’s disease. Gut 2007, 56:61-72.
- [23]Rosenthal R, Milatz S, Krug SM, Oelrich B, Schulzke JD, Amasheh S, Gunzel D, Fromm M: Claudin-2, a component of the tight junction, forms a paracellular water channel. J Cell Sci 2010, 123:1913-1921.
- [24]Schulzke JD, Fromm M: Tight junctions: molecular structure meets function. Ann N Y Acad Sci 2009, 1165:1-6.
- [25]Van-Itallie CM, Holmes J, Bridges A, Anderson JM: Claudin-2-dependent changes in noncharged solute flux are mediated by the extracellular domains and require attachment to the PDZ-scaffold. Ann N Y Acad Sci 2009, 1165:82-87.
- [26]Holmes JL, Van-Itallie CM, Rasmussen JE, Anderson JM: Claudin profiling in the mouse during postnatal intestinal development and along the gastrointestinal tract reveals complex expression patterns. Gene Expr Patterns 2006, 6:581-588.
- [27]Reggiori F, Monastyrska I, Verheije MH, Cali T, Ulasli M, Bianchi S, Bernasconi R, de-Haan CA, Molinari M: Coronaviruses Hijack the LC3-I-positive EDEMosomes, ER-derived vesicles exporting short-lived ERAD regulators, for replication. Cell Host Microbe 2010, 7:500-508.
- [28]Patterson JK, Lei XG, Miller DD: The pig as an experimental model for elucidating the mechanisms governing dietary influence on mineral absorption. Exp Biol Med (Maywood) 2008, 233:651-664.
- [29]Liu F, Li G, Wen K, Bui T, Cao D, Zhang Y, Yuan L: Porcine small intestinal epithelial cell line (IPEC-J2) of rotavirus infection as a new model for the study of innate immune responses to rotaviruses and probiotics. Viral Immunol 2010, 23:135-149.
- [30]Ward LA, Rosen BI, Yuan L, Saif LJ: Pathogenesis of an attenuated and a virulent strain of group A human rotavirus in neonatal gnotobiotic pigs. J Gen Virol 1996, 77(Pt 7):1431-1441.
- [31]Zhang W, Azevedo MS, Gonzalez AM, Saif LJ, Van-Nguyen T, Wen K, Yousef AE, Yuan L: Influence of probiotic Lactobacilli colonization on neonatal B cell responses in a gnotobiotic pig model of human rotavirus infection and disease. Vet Immunol Immunopathol 2008, 122:175-181.
- [32]Zhang W, Wen K, Azevedo MS, Gonzalez A, Saif LJ, Li G, Yousef AE, Yuan L: Lactic acid bacterial colonization and human rotavirus infection influence distribution and frequencies of monocytes/macrophages and dendritic cells in neonatal gnotobiotic pigs. Vet Immunol Immunopathol 2008, 121:222-231.
- [33]Wen K, Azevedo MS, Gonzalez A, Zhang W, Saif LJ, Li G, Yousef A, Yuan L: Toll-like receptor and innate cytokine responses induced by lactobacilli colonization and human rotavirus infection in gnotobiotic pigs. Vet Immunol Immunopathol 2009, 127:304-315.
- [34]Lu R, Wu S, Liu X, Xia Y, Zhang YG, Sun J: Chronic effects of a Salmonella type III secretion effector protein AvrA in vivo. PLoS One 2010, 5:e10505.
- [35]Wu S, Liao AP, Xia Y, Li YC, Li JD, Sartor RB, Sun J: Vitamin D receptor negatively regulates bacterial-stimulated NF-kappaB activity in intestine. Am J Pathol 2010, 177:686-697.