期刊论文详细信息
Cancer Cell International
Assessment of gene expression of intracellular calcium channels, pumps and exchangers with epidermal growth factor-induced epithelial-mesenchymal transition in a breast cancer cell line
Gregory R Monteith1  Sarah J Roberts-Thomson1  Erik W Thompson2  Marie-Odile Parat1  Peter J Cabot1  Michelle T Parsonage1  Felicity M Davis1 
[1]School of Pharmacy, The University of Queensland, Brisbane, QLD 4072, Australia
[2]Department of Surgery, St. Vincent’s Hospital, University of Melbourne, Fitzroy, VIC 3065, Australia
关键词: NCLX;    MCU;    SPCA;    SERCA;    RYR;    IP3R;    EMT;    Breast cancer calcium;   
Others  :  793236
DOI  :  10.1186/1475-2867-13-76
 received in 2013-05-09, accepted in 2013-07-24,  发布年份 2013
PDF
【 摘 要 】

Background

Epithelial-mesenchymal transition (EMT) is a process implicated in cancer metastasis that involves the conversion of epithelial cells to a more mesenchymal and invasive cell phenotype. In breast cancer cells EMT is associated with altered store-operated calcium influx and changes in calcium signalling mediated by activation of cell surface purinergic receptors. In this study, we investigated whether MDA-MB-468 breast cancer cells induced to undergo EMT exhibit changes in mRNA levels of calcium channels, pumps and exchangers located on intracellular calcium storing organelles, including the Golgi, mitochondria and endoplasmic reticulum (ER).

Methods

Epidermal growth factor (EGF) was used to induce EMT in MDA-MB-468 breast cancer cells. Serum-deprived cells were treated with EGF (50 ng/mL) for 12 h and gene expression was assessed using quantitative RT-PCR.

Results and conclusions

These data reveal no significant alterations in mRNA levels of the Golgi calcium pump secretory pathway calcium ATPases (SPCA1 and SPCA2), or the mitochondrial calcium uniporter (MCU) or Na+/Ca2+ exchanger (NCLX). However, EGF-induced EMT was associated with significant alterations in mRNA levels of specific ER calcium channels and pumps, including (sarco)-endoplasmic reticulum calcium ATPases (SERCAs), and inositol 1,4,5-trisphosphate receptor (IP3R) and ryanodine receptor (RYR) calcium channel isoforms. The most prominent change in gene expression between the epithelial and mesenchymal-like states was RYR2, which was enriched 45-fold in EGF-treated MDA-MB-468 cells. These findings indicate that EGF-induced EMT in breast cancer cells may be associated with major alterations in ER calcium homeostasis.

【 授权许可】

   
2013 Davis et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20140705045208862.pdf 701KB PDF download
Figure 4. 37KB Image download
Figure 3. 81KB Image download
20140713053339782.pdf 254KB PDF download
Figure 1. 50KB Image download
【 图 表 】

Figure 1.

Figure 3.

Figure 4.

【 参考文献 】
  • [1]Kalluri R, Weinberg RA: The basics of epithelial-mesenchymal transition. J Clin Invest 2009, 119(6):1420-1428.
  • [2]Mani SA, Guo W, Liao M-J, Eaton EN, Ayyanan A, Zhou AY, Brooks M, Reinhard F, Zhang CC, Shipitsin M, et al.: The epithelial-mesenchymal transition generates cells with properties of stem cells. Cell 2008, 133(4):704-715.
  • [3]Nieto MA: The ins and outs of the epithelial to mesenchymal transition in health and disease. Annu Rev Cell Dev Biol 2011, 27:347-376.
  • [4]Creighton CJ, Li X, Landis M, Dixon JM, Neumeister VM, Sjolund A, Rimm DL, Wong H, Rodriguez A, Herschkowitz JI, et al.: Residual breast cancers after conventional therapy display mesenchymal as well as tumor-initiating features. Proc Natl Acad Sci U S A 2009, 106(33):13820-13825.
  • [5]Lo H-W, Hsu S-C, Xia W, Cao X, Shih J-Y, Wei Y, Abbruzzese JL, Hortobagyi GN, Hung M-C: Epidermal growth factor receptor cooperates with signal transducer and activator of transcription 3 to induce epithelial-mesenchymal transition in cancer cells via up-regulation of TWIST gene expression. Cancer Res 2007, 67(19):9066-9076.
  • [6]Davis FM, Peters AA, Grice DM, Cabot PJ, Parat MO, Roberts-Thomson SJ, Monteith GR: Non-stimulated, agonist-stimulated and store-operated Ca2+ influx in MDA-MB-468 breast cancer cells and the effect of EGF-induced EMT on calcium entry. PLoS ONE 2012, 7(5):e36923.
  • [7]Davis FM, Kenny PA, Soo ETL, Van Denderen BJW, Thompson EW, Cabot PJ, Parat M-O, Roberts-Thomson SJ, Monteith GR: Remodeling of purinergic receptor-mediated Ca(2+) signaling as a consequence of EGF-induced epithelial-mesenchymal transition in breast cancer cells. PLoS ONE 2011, 6(8):e23464.
  • [8]Bonnomet A, Syne L, Brysse A, Feyereisen E, Thompson EW, Noel A, Foidart JM, Birembaut P, Polette M, Gilles C: A dynamic in vivo model of epithelial-to-mesenchymal transitions in circulating tumor cells and metastases of breast cancer. Oncogene 2011, 31:3741-3753.
  • [9]Hu JJ, Qin KH, Zhang Y, Gong JB, Li N, Lv D, Xiang R, Tan XY: Downregulation of transcription factor Oct4 induces an epithelial-to-mesenchymal transition via enhancement of Ca(2+) influx in breast cancer cells. Biochem Biophys Res Commun 2011, 411(4):786-791.
  • [10]Berridge MJ, Bootman MD, Roderick HL: Calcium signalling: Dynamics, homeostasis and remodelling. Nat Rev Mol Cell Biol 2003, 4(7):517-529.
  • [11]Monteith GR, McAndrew D, Faddy HM, Roberts-Thomson SJ: Calcium and cancer: targeting Ca(2+) transport. Nat Rev Cancer 2007, 7(7):519-530.
  • [12]Monteith GR, Davis FM, Roberts-Thompson SJ: Calcium channels and pumps in cancer: changes and consequences. J Biol Chem 2012, 287(38):31666-31673.
  • [13]Bootman MD, Collins TJ, Peppiatt CM, Prothero LS, MacKenzie L, De Smet P, Travers M, Tovey SC, Seo JT, Berridge MJ, et al.: Calcium signalling–an overview. Semin Cell Dev Biol 2001, 12(1):3-10.
  • [14]Putney JW: The physiological function of store-operated calcium entry. Neurochem Res 2011, 36(7):1157-1165.
  • [15]Endo M: Calcium-induced calcium release in skeletal muscle. Physiol Rev 2009, 89(4):1153-1176.
  • [16]Rizzuto R, Brini M, Murgia M, Pozzan T: Microdomains with high Ca2+ close to IP3-sensitive channels that are sensed by neighboring mitochondria. Science 1993, 262(5134):744-747.
  • [17]Rizzuto R, Pinton P, Carrington W, Fay FS, Fogarty KE, Lifshitz LM, Tuft RA, Pozzan T: Close contacts with the endoplasmic reticulum as determinants of mitochondrial Ca2+ responses. Science 1998, 280(5370):1763-1766.
  • [18]Csordas G, Thomas AP, Hajnoczky G: Quasi-synaptic calcium signal transmission between endoplasmic reticulum and mitochondria. EMBO J 1999, 18(1):96-108.
  • [19]Quintana A, Pasche M, Junker C, Al-Ansary D, Rieger H, Kummerow C, Nunez L, Villalobos C, Meraner P, Becherer U, et al.: Calcium microdomains at the immunological synapse: how ORAI channels, mitochondria and calcium pumps generate local calcium signals for efficient T-cell activation. EMBO J 2011, 30(19):3895-3912.
  • [20]House SJ, Potier M, Bisaillon J, Singer HA, Trebak M: The non-excitable smooth muscle: Calcium signaling and phenotypic switching during vascular disease. Pflugers Arch 2008, 456(5):769-785.
  • [21]Vallot O, Combettes L, Jourdon P, Inamo J, Marty I, Claret M, Lompre AM: Intracellular Ca(2+) handling in vascular smooth muscle cells is affected by proliferation. Arterioscler Thromb Vasc Biol 2000, 20(5):1225-1235.
  • [22]Yang J, Mani SA, Donaher JL, Ramaswamy S, Itzykson RA, Come C, Savagner P, Gitelman I, Richardson A, Weinberg RA: Twist, a master regulator of morphogenesis, plays an essential role in tumor metastasis. Cell 2004, 117(7):927-939.
  • [23]Wuytack F, Raeymaekers L, Missiaen L: PMR1/SPCA Ca2+ pumps and the role of the Golgi apparatus as a Ca2+ store. Pflugers Arch 2003, 446(2):148-153.
  • [24]Grice DM, Vetter I, Faddy HM, Kenny PA, Roberts-Thomson SJ, Monteith GR: Golgi calcium pump secretory pathway calcium ATPase 1 (SPCA1) is a key regulator of insulin-like growth factor receptor (IGF1R) processing in the basal-like breast cancer cell line MDA-MB-231. J Biol Chem 2010, 285(48):37458-37466.
  • [25]Feng M, Grice DM, Faddy HM, Nguyen N, Leitch S, Wang Y, Muend S, Kenny PA, Sukumar S, Roberts-Thomson SJ, et al.: Store-independent activation of Orai1 by SPCA2 in mammary tumors. Cell 2010, 143(1):84-98.
  • [26]Luxton GW, Gundersen GG: Orientation and function of the nuclear-centrosomal axis during cell migration. Curr Opin Cell Biol 2011, 23(5):579-588.
  • [27]Giacomello M, Drago I, Pizzo P, Pozzan T: Mitochondrial Ca2+ as a key regulator of cell life and death. Cell Death Differ 2007, 14(7):1267-1274.
  • [28]Marchi S, Lupini L, Patergnani S, Rimessi A, Missiroli S, Bonora M, Bononi A, Corra F, Giorgi C, De Marchi E, et al.: Downregulation of the mitochondrial calcium uniporter by cancer-related miR-25. Curr Biol 2013, 23(1):58-63.
  • [29]Curry MC, Peters AA, Kenny PA, Roberts-Thompson SJ, Monteith GR: Mitochondrial calcium uniporter silencing potentiates caspase-independent cell death in MDA-MB-231 breast cancer cells. Biochem Biophys Res Communin press
  • [30]Robson EJ, Khaled WT, Abell K, Watson CJ: Epithelial-to-mesenchymal transition confers resistance to apoptosis in three murine mammary epithelial cell lines. Differentiation 2006, 74(5):254-264.
  • [31]Vega S, Morales AV, Ocana OH, Valdes F, Fabregat I, Nieto MA: Snail blocks the cell cycle and confers resistance to cell death. Genes Dev 2004, 18(10):1131-1143.
  • [32]Vitali R, Mancini C, Cesi V, Tanno B, Mancuso M, Bossi G, Zhang Y, Martinez RV, Calabretta B, Dominici C, et al.: Slug (SNAI2) down-regulation by RNA interference facilitates apoptosis and inhibits invasive growth in neuroblastoma preclinical models. Clin Cancer Res 2008, 14(14):4622-4630.
  • [33]De Stefani D, Raffaello A, Teardo E, Szabo I, Rizzuto R: A forty-kilodalton protein of the inner membrane is the mitochondrial calcium uniporter. Nature 2011, 476(7360):336-340.
  • [34]Baughman JM, Perocchi F, Girgis HS, Plovanich M, Belcher-Timme CA, Sancak Y, Bao XR, Strittmatter L, Goldberger O, Bogorad RL, et al.: Integrative genomics identifies MCU as an essential component of the mitochondrial calcium uniporter. Nature 2011, 476(7360):341-345.
  • [35]Palty R, Silverman WF, Hershfinkel M, Caporale T, Sensi SL, Parnis J, Nolte C, Fishman D, Shoshan-Barmatz V, Herrmann S, et al.: NCLX is an essential component of mitochondrial Na+/Ca2+ exchange. Proc Natl Acad Sci U S A 2010, 107(1):436-441.
  • [36]Hetz C, Martinon F, Rodriguez D, Glimcher LH: The unfolded protein response: integrating stress signals through the stress sensor IRE1alpha. Physiol Rev 2011, 91(4):1219-1243.
  • [37]Brini M, Carafoli E: Calcium pumps in health and disease. Physiol Rev 2009, 89(4):1341-1378.
  • [38]Foskett JK, White C, Cheung KH, Mak DO: Inositol trisphosphate receptor Ca2+ release channels. Physiol Rev 2007, 87(2):593-658.
  • [39]Miyakawa T, Maeda A, Yamazawa T, Hirose K, Kurosaki T, Iino M: Encoding of Ca2+ signals by differential expression of IP3 receptor subtypes. EMBO J 1999, 18(5):1303-1308.
  • [40]Marks AR: Intracellular calcium-release channels: regulators of cell life and death. Am J Physiol 1997, 272(2):H597-605.
  • [41]Gelebart P, Kovacs T, Brouland JP, van Gorp R, Grossmann J, Rivard N, Panis Y, Martin V, Bredoux R, Enouf J: Expression of endomembrane calcium pumps in colon and gastric cancer cells. Induction of SERCA3 expression during differentiation. J Biol Chem 2002, 277(29):26310-26320.
  • [42]Arbabian A, Brouland JP, Apati A, Paszty K, Hegedus L, Enyedi A, Chomienne C, Papp B: Modulation of endoplasmic reticulum calcium pump expression during lung cancer cell differentiation. FEBS J 2012. [Epub ahead of print]
  • [43]Abdul M, Ramlal S, Hoosein N: Ryanodine receptor expression correlates with tumor grade in breast cancer. Pathol Oncol Res 2008, 14(2):157-160.
  • [44]Lee JM, Davis FM, Roberts-Thomson SJ, Monteith GR: Ion channels and transporters in cancer. 4. Remodeling of Ca(2+) signaling in tumorigenesis: role of Ca(2+) transport. Am J Physiol Cell Physiol 2011, 30(5):C969-C976.
  • [45]Akl H, Bultynck G: Altered Ca(2+) signaling in cancer cells: proto-oncogenes and tumor suppressors targeting IP3 receptors. Biochim Biophys Acta 2013, 1835(2):180-193.
  • [46]Awad SS, Lamb HK, Morgan JM, Dunlop W, Gillespie JI: Differential expression of ryanodine receptor RyR2 mRNA in the non-pregnant and pregnant human myometrium. Biochem J 1997, 322:777-783.
  • [47]Kesherwani V, Agrawal SK: Upregulation of RyR2 in hypoxic/reperfusion injury. J Neurotrauma 2012, 29(6):1255-1265.
  • [48]Davis FM, Azimi I, Faville RA, Peters AA, Jalink K, Putney JW Jr, Goodhill GJ, Thompson EW, Roberts-Thomson SJ, Monteith GR: Induction of epithelial-mesenchymal transition (EMT) in breast cancer cells is calcium signal dependent. Oncogene 2013. [Epub ahead of print]
  • [49]Suchanek KM, May FJ, Robinson JA, Lee WJ, Holman NA, Monteith GR, Roberts-Thompson SJ: Peroxisome proliferator-activated receptor alpha in the human breast cancer cell lines MCF-7 and MDA-MB-231. Mol Carcinog 2002, 34(4):165-171.
  • [50]Vetter I, Touska F, Hess A, Hinsbey R, Sattler S, Lampert A, Sergejeva M, Sharov A, Collins LS, Eberhardt M, et al.: Ciguatoxins activate specific cold pain pathways to elicit burning pain from cooling. EMBO J 2012, 31(19):3795-3808.
  文献评价指标  
  下载次数:51次 浏览次数:41次