期刊论文详细信息
Cardiovascular Diabetology
MuRF2 regulates PPARγ1 activity to protect against diabetic cardiomyopathy and enhance weight gain induced by a high fat diet
Monte S Willis5  Brian A Clarke1,11  Yipin Han1,13  Michael J Muehlbauer1,10  Christopher B Newgard3  James R Bain3  William E Stansfield1  M Faadiel Essop1,12  Rudo F Mapanga1,12  Cecelia C Yates4  Joseph A Hill7  Jonathan C Schisler9  Trisha J Grevengoed6  Traci L Parry5  Jenyth Sullivan2  Megan T Quintana1  Jun He8 
[1] Department of Surgery, University of North Carolina, Chapel Hill, NC, USA;Department of Biology, University of North Carolina, Chapel Hill, NC, USA;Division of Endocrinology, Metabolism, and Nutrition, Department of Medicine, Duke University Medical Center, Durham, NC, USA;Department of Health Promotions and Development, School of Nursing, University of Pittsburgh, Pittsburgh, PA, USA;McAllister Heart Institute, University of North Carolina, 111 Mason Farm Road, MBRB 2340B, Chapel Hill, NC, USA;Department of Nutrition, University of North Carolina, Chapel Hill, NC, USA;Department of Internal Medicine (Cardiology), University of Texas Southwestern Medical Center, Dallas, TX, USA;General Hospital of Ningxia Medical University, Yinchuan, Ningxia, People’s Republic of China;Department of Pharmacology, University of North Carolina, Chapel Hill, NC, USA;Sarah W. Stedman Nutrition and Metabolism Center, Duke Molecular Physiology Institute, Duke University Medical Center, Durham, NC, USA;Novartis, Novartis Institutes for BioMedical Research, Inc., 400 Technology Square, Boston 601-4214, MA, USA;Cardio-Metabolic Research Group (CMRG), Department of Physiological Sciences, Stellenbosch University, Stellenbosch 7600, South Africa;East Chapel Hill High School, Chapel Hill, NC, USA
关键词: Ubiquitin ligase;    PPAR;    Multi-ubiquitin;    Post-translational modification;    Diabetic cardiomyopathy;    MuRF2;   
Others  :  1223757
DOI  :  10.1186/s12933-015-0252-x
 received in 2015-03-25, accepted in 2015-06-30,  发布年份 2015
PDF
【 摘 要 】

Background

In diabetes mellitus the morbidity and mortality of cardiovascular disease is increased and represents an important independent mechanism by which heart disease is exacerbated. The pathogenesis of diabetic cardiomyopathy involves the enhanced activation of PPAR transcription factors, including PPARα, and to a lesser degree PPARβ and PPARγ1. How these transcription factors are regulated in the heart is largely unknown. Recent studies have described post-translational ubiquitination of PPARs as ways in which PPAR activity is inhibited in cancer. However, specific mechanisms in the heart have not previously been described. Recent studies have implicated the muscle-specific ubiquitin ligase muscle ring finger-2 (MuRF2) in inhibiting the nuclear transcription factor SRF. Initial studies of MuRF2−/− hearts revealed enhanced PPAR activity, leading to the hypothesis that MuRF2 regulates PPAR activity by post-translational ubiquitination.

Methods

MuRF2−/− mice were challenged with a 26-week 60% fat diet designed to simulate obesity-mediated insulin resistance and diabetic cardiomyopathy. Mice were followed by conscious echocardiography, blood glucose, tissue triglyceride, glycogen levels, immunoblot analysis of intracellular signaling, heart and skeletal muscle morphometrics, and PPARα, PPARβ, and PPARγ1-regulated mRNA expression.

Results

MuRF2 protein levels increase ~20% during the development of diabetic cardiomyopathy induced by high fat diet. Compared to littermate wildtype hearts, MuRF2−/− hearts exhibit an exaggerated diabetic cardiomyopathy, characterized by an early onset systolic dysfunction, larger left ventricular mass, and higher heart weight. MuRF2−/− hearts had significantly increased PPARα- and PPARγ1-regulated gene expression by RT-qPCR, consistent with MuRF2’s regulation of these transcription factors in vivo. Mechanistically, MuRF2 mono-ubiquitinated PPARα and PPARγ1 in vitro, consistent with its non-degradatory role in diabetic cardiomyopathy. However, increasing MuRF2:PPARγ1 (>5:1) beyond physiological levels drove poly-ubiquitin-mediated degradation of PPARγ1 in vitro, indicating large MuRF2 increases may lead to PPAR degradation if found in other disease states.

Conclusions

Mutations in MuRF2 have been described to contribute to the severity of familial hypertrophic cardiomyopathy. The present study suggests that the lack of MuRF2, as found in these patients, can result in an exaggerated diabetic cardiomyopathy. These studies also identify MuRF2 as the first ubiquitin ligase to regulate cardiac PPARα and PPARγ1 activities in vivo via post-translational modification without degradation.

【 授权许可】

   
2015 He et al.

【 预 览 】
附件列表
Files Size Format View
20150904053027354.pdf 3991KB PDF download
Fig.8. 75KB Image download
Fig.7. 55KB Image download
Fig.6. 74KB Image download
Fig.5. 66KB Image download
Fig.4. 57KB Image download
Fig.3. 76KB Image download
Fig.2. 107KB Image download
Fig.1. 58KB Image download
【 图 表 】

Fig.1.

Fig.2.

Fig.3.

Fig.4.

Fig.5.

Fig.6.

Fig.7.

Fig.8.

【 参考文献 】
  • [1]Murray CJ, Lopez AD. Mortality by cause for eight regions of the world: global burden of disease study. Lancet. 1997; 349(9061):1269-1276.
  • [2]Bauters C, Lamblin N, Mc Fadden EP, Van Belle E, Millaire A, de Groote P. Influence of diabetes mellitus on heart failure risk and outcome. Cardiovasc Diabetol. 2003; 2:1.
  • [3]Simonson DC. Etiology and prevalence of hypertension in diabetic patients. Diabetes Care. 1988; 11(10):821-827.
  • [4]Poornima IG, Parikh P, Shannon RP. Diabetic cardiomyopathy: the search for a unifying hypothesis. Circ Res. 2006; 98(5):596-605.
  • [5]Yang Q, Li Y. Roles of PPARs on regulating myocardial energy and lipid homeostasis. J Mol Med (Berl). 2007; 85(7):697-706.
  • [6]Buchanan J, Mazumder PK, Hu P, Chakrabarti G, Roberts MW, Yun UJ et al.. Reduced cardiac efficiency and altered substrate metabolism precedes the onset of hyperglycemia and contractile dysfunction in two mouse models of insulin resistance and obesity. Endocrinology. 2005; 146(12):5341-5349.
  • [7]Aguiari P, Leo S, Zavan B, Vindigni V, Rimessi A, Bianchi K et al.. High glucose induces adipogenic differentiation of muscle-derived stem cells. Proc Natl Acad Sci USA. 2008; 105(4):1226-1231.
  • [8]Feige JN, Gelman L, Michalik L, Desvergne B, Wahli W. From molecular action to physiological outputs: peroxisome proliferator-activated receptors are nuclear receptors at the crossroads of key cellular functions. Prog Lipid Res. 2006; 45(2):120-159.
  • [9]Madrazo JA, Kelly DP. The PPAR trio: regulators of myocardial energy metabolism in health and disease. J Mol Cell Cardiol. 2008; 44(6):968-975.
  • [10]Doehner W, Rauchhaus M, Ponikowski P, Godsland IF, von Haehling S, Okonko DO et al.. Impaired insulin sensitivity as an independent risk factor for mortality in patients with stable chronic heart failure. J Am Coll Cardiol. 2005; 46(6):1019-1026.
  • [11]Carley AN, Severson DL. Fatty acid metabolism is enhanced in type 2 diabetic hearts. Biochim Biophys Acta. 2005; 1734(2):112-126.
  • [12]Dirkx E, Schwenk RW, Glatz JF, Luiken JJ, van Eys GJ. High fat diet induced diabetic cardiomyopathy. Prostaglandins Leukot Essent Fatty Acids. 2011; 85(5):219-225.
  • [13]Yu C, Chen Y, Cline GW, Zhang D, Zong H, Wang Y et al.. Mechanism by which fatty acids inhibit insulin activation of insulin receptor substrate-1 (IRS-1)-associated phosphatidylinositol 3-kinase activity in muscle. J Biol Chem. 2002; 277(52):50230-50236.
  • [14]Nishida M, Maruyama Y, Tanaka R, Kontani K, Nagao T, Kurose H. G alpha(i) and G alpha(o) are target proteins of reactive oxygen species. Nature. 2000; 408(6811):492-495.
  • [15]Molkentin JD. Calcineurin-NFAT signaling regulates the cardiac hypertrophic response in coordination with the MAPKs. Cardiovasc Res. 2004; 63(3):467-475.
  • [16]Puthanveetil P, Wan A, Rodrigues B. FoxO1 is crucial for sustaining cardiomyocyte metabolism and cell survival. Cardiovasc Res. 2013; 97(3):393-403.
  • [17]Fang CX, Dong F, Thomas DP, Ma H, He L, Ren J. Hypertrophic cardiomyopathy in high-fat diet-induced obesity: role of suppression of forkhead transcription factor and atrophy gene transcription. Am J Physiol Heart Circ Physiol. 2008; 295(3):H1206-H1215.
  • [18]Hirotani S, Otsu K, Nishida K, Higuchi Y, Morita T, Nakayama H et al.. Involvement of nuclear factor-kappaB and apoptosis signal-regulating kinase 1 in G-protein-coupled receptor agonist-induced cardiomyocyte hypertrophy. Circulation. 2002; 105(4):509-515.
  • [19]Varga ZV, Giricz Z, Liaudet L, Hasko G, Ferdinandy P, Pacher P. Interplay of oxidative, nitrosative/nitrative stress, inflammation, cell death and autophagy in diabetic cardiomyopathy. Biochim Biophys Acta. 2015; 1852(2):232-242.
  • [20]Centner T, Yano J, Kimura E, McElhinny AS, Pelin K, Witt CC et al.. Identification of muscle specific ring finger proteins as potential regulators of the titin kinase domain. J Mol Biol. 2001; 306(4):717-726.
  • [21]Pizon V, Iakovenko A, Van Der Ven PF, Kelly R, Fatu C, Furst DO et al.. Transient association of titin and myosin with microtubules in nascent myofibrils directed by the MURF2 RING-finger protein. J Cell Sci. 2002; 115(Pt 23):4469-4482.
  • [22]McElhinny AS, Perry CN, Witt CC, Labeit S, Gregorio CC. Muscle-specific RING finger-2 (MURF-2) is important for microtubule, intermediate filament and sarcomeric M-line maintenance in striated muscle development. J Cell Sci. 2004; 117(Pt 15):3175-3188.
  • [23]Perera S, Mankoo B, Gautel M. Developmental regulation of MURF E3 ubiquitin ligases in skeletal muscle. J Muscle Res Cell Motil. 2012; 33(2):107-122.
  • [24]Battiprolu PK, Hojayev B, Jiang N, Wang ZV, Luo X, Iglewski M et al.. Metabolic stress-induced activation of FoxO1 triggers diabetic cardiomyopathy in mice. J Clin Invest. 2012; 122(3):1109-1118.
  • [25]Ni YG, Wang N, Cao DJ, Sachan N, Morris DJ, Gerard RD et al.. FoxO transcription factors activate Akt and attenuate insulin signaling in heart by inhibiting protein phosphatases. Proc Natl Acad Sci USA. 2007; 104(51):20517-20522.
  • [26]Willis MS, Ike C, Li L, Wang DZ, Glass DJ, Patterson C. Muscle ring finger 1, but not muscle ring finger 2, regulates cardiac hypertrophy in vivo. Circ Res. 2007; 100(4):456-459.
  • [27]Makowski L, Zhou C, Zhong Y, Kuan PF, Fan C, Sampey BP et al.. Obesity increases tumor aggressiveness in a genetically engineered mouse model of serous ovarian cancer. Gynecol Oncol. 2014; 133(1):90-97.
  • [28]Vaitheesvaran B, LeRoith D, Kurland IJ. MKR mice have increased dynamic glucose disposal despite metabolic inflexibility, and hepatic and peripheral insulin insensitivity. Diabetologia. 2010; 53(10):2224-2232.
  • [29]Xin-Long C, Zhao-Fan X, Dao-Feng B, Jian-Guang T, Duo W. Insulin resistance following thermal injury: an animal study. Burns. 2007; 33(4):480-483.
  • [30]Li LO, Ellis JM, Paich HA, Wang S, Gong N, Altshuller G et al.. Liver-specific loss of long chain acyl-CoA synthetase-1 decreases triacylglycerol synthesis and beta-oxidation and alters phospholipid fatty acid composition. J Biol Chem. 2009; 284(41):27816-27826.
  • [31]Furuichi Y, Goto-Inoue N, Manabe Y, Setou M, Masuda K, Fujii NL. Imaging mass spectrometry reveals fiber-specific distribution of acetylcarnitine and contraction-induced carnitine dynamics in rat skeletal muscles. Biochim Biophys Acta. 2014; 1837(10):1699-1706.
  • [32]Mapanga RF, Rajamani U, Dlamini N, Zungu-Edmondson M, Kelly-Laubscher R, Shafiullah M et al.. Oleanolic Acid: a novel cardioprotective agent that blunts hyperglycemia-induced contractile dysfunction. PLoS One. 2012; 7(10):e47322.
  • [33]Roessner U, Wagner C, Kopka J, Trethewey RN, Willmitzer L. Technical advance: simultaneous analysis of metabolites in potato tuber by gas chromatography-mass spectrometry. Plant J. 2000; 23(1):131-142.
  • [34]Fiehn O, Wohlgemuth G, Scholz M, Kind T, Lee do Y, Lu Y et al.. Quality control for plant metabolomics: reporting MSI-compliant studies. Plant J. 2008; 53(4):691-704.
  • [35]Kind T, Wohlgemuth G, Leedo Y, Lu Y, Palazoglu M, Shahbaz S et al.. FiehnLib: mass spectral and retention index libraries for metabolomics based on quadrupole and time-of-flight gas chromatography/mass spectrometry. Anal Chem. 2009; 81(24):10038-10048.
  • [36]Banerjee R, Bultman SJ, Holley D, Hillhouse C, Bain JR, Newgard CB et al (2015) Non-targeted metabolomics of Brg1/Brm double-mutant cardiomyocytes reveals a novel role for SWI/SNF complexes in metabolic homeostasis. Metabolomics (in press)
  • [37]Banerjee R, He J, Spaniel C, Quintana MT, Wang Z, Bain JR et al.. Non-targeted metabolomics analysis of cardiac Muscle Ring Finger-1 (MuRF1), MuRF2, and MuRF3 in vivo reveals novel and redundant metabolic changes. Metabolomics. 2015; 11:312-322.
  • [38]Xia J, Mandal R, Sinelnikov IV, Broadhurst D, Wishart DS. MetaboAnalyst 2.0–a comprehensive server for metabolomic data analysis. Nucleic Acids Res. 2012; 40(Web Server issue):W127-W133.
  • [39]Xia J, Psychogios N, Young N, Wishart DS. MetaboAnalyst: a web server for metabolomic data analysis and interpretation. Nucleic Acids Res. 2009; 37(Web Server issue):W652-W660.
  • [40]Willis MS, Wadosky KM, Rodriguez JE, Schisler JC, Lockyer P, Hilliard EG et al.. Muscle ring finger 1 and muscle ring finger 2 are necessary but functionally redundant during developmental cardiac growth and regulate E2F1-mediated gene expression in vivo. Cell Biochem Funct. 2014; 32(1):39-50.
  • [41]Lange S, Xiang F, Yakovenko A, Vihola A, Hackman P, Rostkova E et al.. The kinase domain of titin controls muscle gene expression and protein turnover. Science. 2005; 308(5728):1599-1603.
  • [42]Ravingerova T, Adameova A, Carnicka S, Nemcekova M, Kelly T, Matejikova J et al.. The role of PPAR in myocardial response to ischemia in normal and diseased heart. Gen Physiol Biophys. 2011; 30(4):329-341.
  • [43]Wadosky KM, Willis MS. The story so far: post-translational regulation of peroxisome proliferator-activated receptors by ubiquitination and SUMOylation. Am J Physiol Heart Circ Physiol. 2012; 302(3):H515-H526.
  • [44]Lee TI, Kao YH, Chen YC, Huang JH, Hsiao FC, Chen YJ. Peroxisome proliferator-activated receptors modulate cardiac dysfunction in diabetic cardiomyopathy. Diabetes Res Clin Pract. 2013; 100(3):330-339.
  • [45]How OJ, Aasum E, Severson DL, Chan WY, Essop MF, Larsen TS. Increased myocardial oxygen consumption reduces cardiac efficiency in diabetic mice. Diabetes. 2006; 55(2):466-473.
  • [46]Willis MS, Schisler JC, Li L, Rodriguez JE, Hilliard EG, Charles PC et al.. Cardiac muscle ring finger-1 increases susceptibility to heart failure in vivo. Circ Res. 2009; 105(1):80-88.
  • [47]Aragno M, Mastrocola R, Medana C, Catalano MG, Vercellinatto I, Danni O et al.. Oxidative stress-dependent impairment of cardiac-specific transcription factors in experimental diabetes. Endocrinology. 2006; 147(12):5967-5974.
  • [48]Liu X, Liu C, Zhang X, Zhao J, Xu J. Urocortin ameliorates diabetic cardiomyopathy in rats via the Akt/GSK-3beta signaling pathway. Exp Ther Med. 2015; 9(3):667-674.
  • [49]Li J, Peng L, Du H, Wang Y, Lu B, Xu Y et al.. The protective effect of beraprost sodium on diabetic cardiomyopathy through the inhibition of the p38 MAPK signaling pathway in high-fat-induced SD rats. Int J Endocrinol. 2014; 2014:901437.
  • [50]Asbun J, Villarreal FJ. The pathogenesis of myocardial fibrosis in the setting of diabetic cardiomyopathy. J Am Coll Cardiol. 2006; 47(4):693-700.
  • [51]Factor SM, Minase T, Bhan R, Wolinsky H, Sonnenblick EH. Hypertensive diabetic cardiomyopathy in the rat: ultrastructural features. Virchows Arch A Pathol Anat Histopathol. 1983; 398(3):305-317.
  • [52]Van Linthout S, Seeland U, Riad A, Eckhardt O, Hohl M, Dhayat N et al.. Reduced MMP-2 activity contributes to cardiac fibrosis in experimental diabetic cardiomyopathy. Basic Res Cardiol. 2008; 103(4):319-327.
  • [53]Aguilar H, Fricovsky E, Ihm S, Schimke M, Maya-Ramos L, Aroonsakool N et al.. Role for high-glucose-induced protein O-GlcNAcylation in stimulating cardiac fibroblast collagen synthesis. Am J Physiol Cell Physiol. 2014; 306(9):C794-C804.
  • [54]Burkart EM, Sambandam N, Han X, Gross RW, Courtois M, Gierasch CM et al.. Nuclear receptors PPARbeta/delta and PPARalpha direct distinct metabolic regulatory programs in the mouse heart. J Clin Invest. 2007; 117(12):3930-3939.
  • [55]Son NH, Park TS, Yamashita H, Yokoyama M, Huggins LA, Okajima K et al.. Cardiomyocyte expression of PPARgamma leads to cardiac dysfunction in mice. J Clin Invest. 2007; 117(10):2791-2801.
  • [56]Liu S, Hatano B, Zhao M, Yen CC, Kang K, Reilly SM et al.. Role of peroxisome proliferator-activated receptor delta}/{beta in hepatic metabolic regulation. J Biol Chem. 2011; 286(2):1237-1247.
  • [57]Okere IC, Chandler MP, McElfresh TA, Rennison JH, Sharov V, Sabbah HN et al.. Differential effects of saturated and unsaturated fatty acid diets on cardiomyocyte apoptosis, adipose distribution, and serum leptin. Am J Physiol Heart Circ Physiol. 2006; 291(1):H38-H44.
  • [58]Wang H, Sreenivasan U, Hu H, Saladino A, Polster BM, Lund LM et al.. Perilipin 5, a lipid droplet-associated protein, provides physical and metabolic linkage to mitochondria. J Lipid Res. 2011; 52(12):2159-2168.
  • [59]Son NH, Yu S, Tuinei J, Arai K, Hamai H, Homma S et al.. PPARgamma-induced cardiolipotoxicity in mice is ameliorated by PPARalpha deficiency despite increases in fatty acid oxidation. J Clin Invest. 2010; 120(10):3443-3454.
  • [60]Stanley WC, Recchia FA. Lipotoxicity and the development of heart failure: moving from mouse to man. Cell Metab. 2010; 12(6):555-556.
  • [61]Reichelt ME, Mellor KM, Curl CL, Stapleton D, Delbridge LM. Myocardial glycophagy—a specific glycogen handling response to metabolic stress is accentuated in the female heart. J Mol Cell Cardiol. 2013; 65:67-75.
  • [62]Wu Z, Chen Q, Ke D, Li G, Deng W. Emodin protects against diabetic cardiomyopathy by regulating the AKT/GSK-3beta signaling pathway in the rat model. Molecules. 2014; 19(9):14782-14793.
  • [63]Hemmeryckx B, Hoylaerts MF, Gallacher DJ, Rong Lu H, Himmelreich U, D’Hooge J et al.. Does rosiglitazone affect adiposity and cardiac function in genetic diabetic mice? Eur J Pharmacol. 2013; 700(1–3):23-31.
  • [64]Hemmeryckx B, Gaekens M, Gallacher DJ, Lu HR, Lijnen HR. Effect of rosiglitazone on liver structure and function in genetically diabetic Akita mice. Basic Clin Pharmacol Toxicol. 2013; 113(5):353-360.
  • [65]Marsh SA, Powell PC, Dell’italia LJ, Chatham JC. Cardiac O-GlcNAcylation blunts autophagic signaling in the diabetic heart. Life Sci. 2013; 92(11):648-656.
  • [66]Kim HS, Woo JS, Joo HJ, Moon WK. Cardiac transcription factor Nkx2.5 is downregulated under excessive O-GlcNAcylation condition. PLoS One. 2012; 7(6):e38053.
  • [67]Ruan HB, Nie Y, Yang X. Regulation of protein degradation by O-GlcNAcylation: crosstalk with ubiquitination. Mol Cell Proteomics. 2013; 12(12):3489-3497.
  • [68]Yokoe S, Asahi M, Takeda T, Otsu K, Taniguchi N, Miyoshi E et al.. Inhibition of phospholamban phosphorylation by O-GlcNAcylation: implications for diabetic cardiomyopathy. Glycobiology. 2010; 20(10):1217-1226.
  • [69]Clark RJ, McDonough PM, Swanson E, Trost SU, Suzuki M, Fukuda M et al.. Diabetes and the accompanying hyperglycemia impairs cardiomyocyte calcium cycling through increased nuclear O-GlcNAcylation. J Biol Chem. 2003; 278(45):44230-44237.
  • [70]Ouwens DM, Boer C, Fodor M, de Galan P, Heine RJ, Maassen JA et al.. Cardiac dysfunction induced by high-fat diet is associated with altered myocardial insulin signalling in rats. Diabetologia. 2005; 48(6):1229-1237.
  • [71]Thomas CM, Yong QC, Rosa RM, Seqqat R, Gopal S, Casarini DE et al.. Cardiac-specific suppression of NF-kappaB signaling prevents diabetic cardiomyopathy via inhibition of the renin-angiotensin system. Am J Physiol Heart Circ Physiol. 2014; 307(7):H1036-H1045.
  • [72]Qi Y, Zhu Q, Zhang K, Thomas C, Wu Y, Kumar R et al.. Activation of Foxo1 by insulin resistance promotes cardiac dysfunction and beta-myosin heavy chain gene expression. Circ Heart Fail. 2015; 8(1):198-208.
  • [73]Genini D, Catapano CV. Block of nuclear receptor ubiquitination. A mechanism of ligand-dependent control of peroxisome proliferator-activated receptor delta activity. J Biol Chem. 2007; 282(16):11776-11785.
  • [74]Witt SH, Granzier H, Witt CC, Labeit S. MURF-1 and MURF-2 target a specific subset of myofibrillar proteins redundantly: towards understanding MURF-dependent muscle ubiquitination. J Mol Biol. 2005; 350(4):713-722.
  • [75]Willis MS, Bevilacqua A, Pulinilkunnil T, Kienesberger P, Tannu M, Patterson C. The role of ubiquitin ligases in cardiac disease. J Mol Cell Cardiol. 2014; 71:43-53.
  • [76]Rieck M, Wedeken L, Muller-Brusselbach S, Meissner W, Muller R. Expression level and agonist-binding affect the turnover, ubiquitination and complex formation of peroxisome proliferator activated receptor beta. FEBS J. 2007; 274(19):5068-5076.
  • [77]Kim JH, Park KW, Lee EW, Jang WS, Seo J, Shin S et al.. Suppression of PPARgamma through MKRN1-mediated ubiquitination and degradation prevents adipocyte differentiation. Cell Death Differ. 2014; 21(4):594-603.
  • [78]Mochida K, Oikawa Y, Kimura Y, Kirisako H, Hirano H, Ohsumi Y et al.. Receptor-mediated selective autophagy degrades the endoplasmic reticulum and the nucleus. Nature. 2015; 522(7556):359-362.
  • [79]Su M, Wang J, Kang L, Wang Y, Zou Y, Feng X et al.. Rare variants in genes encoding MuRF1 and MuRF2 are modifiers of hypertrophic cardiomyopathy. Int J Mol Sci. 2014; 15(6):9302-9313.
  • [80]Lockyer P, Schisler JC, Patterson C, Willis MS. Minireview: Won’t get fooled again: the nonmetabolic roles of peroxisome proliferator-activated receptors (PPARs) in the heart. Mol Endocrinol. 2010; 24(6):1111-1119.
  • [81]Fan W, Evans R. PPARs and ERRs: molecular mediators of mitochondrial metabolism. Curr Opin Cell Biol. 2015; 33:49-54.
  • [82]Delfosse V, Maire AL, Balaguer P, Bourguet W (2014) A structural perspective on nuclear receptors as targets of environmental compounds. Acta Pharmacol Sin. doi:10.1038/aps.2014.133 [Epub ahead of print]
  • [83]Rodríguez JE, Liao J, He J, Schisler JC, Newgard CB, Drujan D et al (2015) The ubiquitin ligase MuRF1 regulates PPARα activity in the heart by enhancing nuclear export via monoubiquitination. Mol Cell Endocrinol (in press)
  • [84]Fu M, Zhang J, Lin Y, Zhu X, Zhao L, Ahmad M et al.. Early stimulation and late inhibition of peroxisome proliferator-activated receptor gamma (PPAR gamma) gene expression by transforming growth factor beta in human aortic smooth muscle cells: role of early growth-response factor-1 (Egr-1), activator protein 1 (AP1) and Smads. Biochem J. 2003; 370(Pt 3):1019-1025.
  • [85]Jiang X, Yang X, Han Y, Lu S. Transcription factor AP1 binds the functional region of the promoter and regulates gene expression of human PPARdelta in LoVo cell. Tumour Biol. 2013; 34(6):3619-3625.
  • [86]Nie L, Sasaki M, Maki CG. Regulation of p53 nuclear export through sequential changes in conformation and ubiquitination. J Biol Chem. 2007; 282(19):14616-14625.
  • [87]Brooks CL, Li M, Gu W. Monoubiquitination: the signal for p53 nuclear export? Cell Cycle. 2004; 3(4):436-438.
  • [88]Carter S, Bischof O, Dejean A, Vousden KH. C-terminal modifications regulate MDM2 dissociation and nuclear export of p53. Nat Cell Biol. 2007; 9(4):428-435.
  • [89]Shmueli A, Oren M. Regulation of p53 by Mdm2: fate is in the numbers. Mol Cell. 2004; 13(1):4-5.
  • [90]Li M, Brooks CL, Wu-Baer F, Chen D, Baer R, Gu W. Mono- versus polyubiquitination: differential control of p53 fate by Mdm2. Science. 2003; 302(5652):1972-1975.
  • [91]den Besten W, Kuo ML, Tago K, Williams RT, Sherr CJ. Ubiquitination of, and sumoylation by, the Arf tumor suppressor. Isr Med Assoc J. 2006; 8(4):249-251.
  • [92]Thrower JS, Hoffman L, Rechsteiner M, Pickart CM. Recognition of the polyubiquitin proteolytic signal. EMBO J. 2000; 19(1):94-102.
  • [93]Buchberger A. From UBA to UBX: new words in the ubiquitin vocabulary. Trends Cell Biol. 2002; 12(5):216-221.
  • [94]Jackman RW, Kandarian SC. The molecular basis of skeletal muscle atrophy. Am J Physiol Cell Physiol. 2004; 287(4):C834-C843.
  • [95]Schaffer SW, Jong CJ, Ito T, Azuma J. Effect of taurine on ischemia-reperfusion injury. Amino Acids. 2014; 46(1):21-30.
  • [96]Spichtin H, Mihatsch MJ. Diagnostic progress in familial nephropathy. Alport’s syndrome, nail-patella syndrome and benign familial hematuria (author’s transl). Pathol Res Pract. 1979; 164(1):80-86.
  • [97]Wang GG, Li W, Lu XH, Zhao X, Xu L. Taurine attenuates oxidative stress and alleviates cardiac failure in type I diabetic rats. Croat Med J. 2013; 54(2):171-179.
  • [98]Beyranvand MR, Khalafi MK, Roshan VD, Choobineh S, Parsa SA, Piranfar MA. Effect of taurine supplementation on exercise capacity of patients with heart failure. J Cardiol. 2011; 57(3):333-337.
  • [99]Ito T, Schaffer S, Azuma J. The effect of taurine on chronic heart failure: actions of taurine against catecholamine and angiotensin II. Amino Acids. 2014; 46(1):111-119.
  • [100]Ito T, Schaffer SW, Azuma J. The potential usefulness of taurine on diabetes mellitus and its complications. Amino Acids. 2012; 42(5):1529-1539.
  • [101]Kuang E, Qi J, Ronai Z. Emerging roles of E3 ubiquitin ligases in autophagy. Trends Biochem Sci. 2013; 38(9):453-460.
  • [102]Perera S, Holt MR, Mankoo BS, Gautel M. Developmental regulation of MURF ubiquitin ligases and autophagy proteins nbr1, p62/SQSTM1 and LC3 during cardiac myofibril assembly and turnover. Dev Biol. 2011; 351(1):46-61.
  • [103]Wang B, Yang Q, Sun YY, Xing YF, Wang YB, Lu XT et al.. Resveratrol-enhanced autophagic flux ameliorates myocardial oxidative stress injury in diabetic mice. J Cell Mol Med. 2014; 18(8):1599-1611.
  • [104]Fuentes-Antras J, Picatoste B, Gomez-Hernandez A, Egido J, Tunon J, Lorenzo O. Updating experimental models of diabetic cardiomyopathy. J Diabetes Res. 2015; 2015:656795.
  • [105]Wadosky KM, Rodriguez JE, Hite RL, Min JN, Walton BL, Willis MS. Muscle RING finger-1 attenuates IGF-I-dependent cardiomyocyte hypertrophy by inhibiting JNK signaling. Am J Physiol Endocrinol Metab. 2014; 306(7):E723-E739.
  • [106]Cohen S, Lee D, Zhai B, Gygi SP, Goldberg AL. Trim32 reduces PI3K-Akt-FoxO signaling in muscle atrophy by promoting plakoglobin-PI3K dissociation. J Cell Biol. 2014; 204(5):747-758.
  • [107]Bodine SC, Latres E, Baumhueter S, Lai VK, Nunez L, Clarke BA et al.. Identification of ubiquitin ligases required for skeletal muscle atrophy. Science. 2001; 294(5547):1704-1708.
  • [108]Clarke BA, Drujan D, Willis MS, Murphy LO, Corpina RA, Burova E et al.. The E3 Ligase MuRF1 degrades myosin heavy chain protein in dexamethasone-treated skeletal muscle. Cell Metab. 2007; 6(5):376-385.
  • [109]Sarkozy M, Zvara A, Gyemant N, Fekete V, Kocsis GF, Pipis J et al.. Metabolic syndrome influences cardiac gene expression pattern at the transcript level in male ZDF rats. Cardiovasc Diabetol. 2013; 12:16.
  • [110]Lee TI, Kao YH, Chen YC, Pan NH, Chen YJ. Oxidative stress and inflammation modulate peroxisome proliferator-activated receptors with regional discrepancy in diabetic heart. Eur J Clin Invest. 2010; 40(8):692-699.
  • [111]Spiegelman BM. PPAR-gamma: adipogenic regulator and thiazolidinedione receptor. Diabetes. 1998; 47(4):507-514.
  • [112]Lee TI, Kao YH, Chen YC, Pan NH, Lin YK, Chen YJ. Cardiac peroxisome-proliferator-activated receptor expression in hypertension co-existing with diabetes. Clin Sci (Lond). 2011; 121(7):305-312.
  • [113]Yu BC, Chang CK, Ou HY, Cheng KC, Cheng JT. Decrease of peroxisome proliferator-activated receptor delta expression in cardiomyopathy of streptozotocin-induced diabetic rats. Cardiovasc Res. 2008; 80(1):78-87.
  文献评价指标  
  下载次数:29次 浏览次数:7次