BMC Endocrine Disorders | |
Muscle ring finger-3 protects against diabetic cardiomyopathy induced by a high fat diet | |
Monte S. Willis1,11  James R. Bain3  Christopher B. Newgard3  Michael J. Muehlbauer1,12  M. Faadiel Essop9  Rudo F. Mapanga9  William E. Stansfield1  Cecelia C. Yates4  Joseph A. Hill6  Yipin Han7  Jonathan Schisler1,10  Trisha Grevengoed5  Jenyth Sullivan2  Jun He8  Megan T. Quintana1  | |
[1] Department of Surgery, University of North Carolina, Chapel Hill, NC, USA;Department of Biology, University of North Carolina, Chapel Hill, NC, USA;Division of Endocrinology, Metabolism, and Nutrition, Department of Medicine, Duke University Medical Center, Durham, NC, USA;Department of Health Promotions and Development, School of Nursing, University of Pittsburgh, Pittsburgh, PA, USA;Department of Nutrition, University of North Carolina, Chapel Hill, NC, USA;Department of Internal Medicine (Cardiology), University of Texas Southwestern Medical Center, Dallas, TX, USA;North Carolina State University, Department of Engineering, Raleigh, NC, USA;General Hospital of Ningxia Medical University, Yinchuan, Ningxia, People’s Republic of China;Cardio-Metabolic Research Group (CMRG), Department of Physiological Sciences, Stellenbosch University, Stellenbosch 7600, South Africa;Department of Pharmacology, University of North Carolina, Chapel Hill, NC, USA;McAllister Heart Institute, University of North Carolina, Chapel Hill, NC, USA;Sarah W. Stedman Nutrition and Metabolism Center, Duke Molecular Physiology Institute, Duke University Medical Center, Durham, NC, USA | |
关键词: Ubiquitin ligase; PPAR; Multi-ubiquitin; Post-translational modification; Diabetic cardiomyopathy; MuRF3; | |
Others : 1221186 DOI : 10.1186/s12902-015-0028-z |
|
received in 2015-04-02, accepted in 2015-06-01, 发布年份 2015 | |
【 摘 要 】
Background
The pathogenesis of diabetic cardiomyopathy (DCM) involves the enhanced activation of peroxisome proliferator activating receptor (PPAR) transcription factors, including the most prominent isoform in the heart, PPARα. In cancer cells and adipocytes, post-translational modification of PPARs have been identified, including ligand-dependent degradation of PPARs by specific ubiquitin ligases. However, the regulation of PPARs in cardiomyocytes and heart have not previously been identified. We recently identified that muscle ring finger-1 (MuRF1) and MuRF2 differentially inhibit PPAR activities by mono-ubiquitination, leading to the hypothesis that MuRF3 may regulate PPAR activity in vivo to regulate DCM.
Methods
MuRF3−/− mice were challenged with 26 weeks 60 % high fat diet to induce insulin resistance and DCM. Conscious echocardiography, blood glucose, tissue triglyceride, glycogen levels, immunoblot analysis of intracellular signaling, heart and skeletal muscle morphometrics, and PPARα, PPARβ, and PPARγ1 activities were assayed.
Results
MuRF3−/− mice exhibited a premature systolic heart failure by 6 weeks high fat diet (vs. 12 weeks in MuRF3+/+). MuRF3−/− mice weighed significantly less than sibling-matched wildtype mice after 26 weeks HFD. These differences may be largely due to resistance to fat accumulation, as MRI analysis revealed MuRF3−/− mice had significantly less fat mass, but not lean body mass. In vitro ubiquitination assays identified MuRF3 mono-ubiquitinated PPARα and PPARγ1, but not PPARβ.
Conclusions
These findings suggest that MuRF3 helps stabilize cardiac PPARα and PPARγ1 in vivo to support resistance to the development of DCM.
MuRF3 also plays an unexpected role in regulating fat storage despite being found only in striated muscle.
【 授权许可】
2015 Quintana et al.
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
20150728014433592.pdf | 2852KB | download | |
Fig. 8. | 56KB | Image | download |
Fig. 7. | 58KB | Image | download |
Fig. 6. | 41KB | Image | download |
Fig. 5. | 71KB | Image | download |
Fig. 4. | 56KB | Image | download |
Fig. 3. | 114KB | Image | download |
Fig. 2. | 106KB | Image | download |
Fig. 1. | 69KB | Image | download |
【 图 表 】
Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
【 参考文献 】
- [1]Spencer JA, Eliazer S, Ilaria RL, Richardson JA, Olson EN. Regulation of microtubule dynamics and myogenic differentiation by MURF, a striated muscle RING-finger protein. J Cell Biol. 2000; 150(4):771-84.
- [2]Centner T, Yano J, Kimura E, McElhinny AS, Pelin K, Witt CC et al.. Identification of muscle specific ring finger proteins as potential regulators of the titin kinase domain. J Mol Biol. 2001; 306(4):717-26.
- [3]Lange S, Xiang F, Yakovenko A, Vihola A, Hackman P, Rostkova E et al.. The kinase domain of titin controls muscle gene expression and protein turnover. Science. 2005; 308(5728):1599-603.
- [4]Pizon V, Iakovenko A, Van Der Ven PF, Kelly R, Fatu C, Furst DO et al.. Transient association of titin and myosin with microtubules in nascent myofibrils directed by the MURF2 RING-finger protein. J Cell Sci. 2002; 115(Pt 23):4469-82.
- [5]Willis MS, Ike C, Li L, Wang DZ, Glass DJ, Patterson C. Muscle ring finger 1, but not muscle ring finger 2, regulates cardiac hypertrophy in vivo. Circ Res. 2007; 100(4):456-9.
- [6]Willis MS, Wadosky KM, Rodriguez JE, Schisler JC, Lockyer P, Hilliard EG et al.. Muscle ring finger 1 and muscle ring finger 2 are necessary but functionally redundant during developmental cardiac growth and regulate E2F1-mediated gene expression in vivo. Cell Biochem Funct. 2014; 32(1):39-50.
- [7]Perera S, Holt MR, Mankoo BS, Gautel M. Developmental regulation of MURF ubiquitin ligases and autophagy proteins nbr1, p62/SQSTM1 and LC3 during cardiac myofibril assembly and turnover. Dev Biol. 2011; 351(1):46-61.
- [8]Perera S, Mankoo B, Gautel M. Developmental regulation of MURF E3 ubiquitin ligases in skeletal muscle. J Muscle Res Cell Motil. 2012; 33(2):107-22.
- [9]Fielitz J, van Rooij E, Spencer JA, Shelton JM, Latif S, van der Nagel R et al.. Loss of muscle-specific RING-finger 3 predisposes the heart to cardiac rupture after myocardial infarction. Proc Natl Acad Sci U S A. 2007; 104(11):4377-82.
- [10]Fielitz J, Kim MS, Shelton JM, Latif S, Spencer JA, Glass DJ et al.. Myosin accumulation and striated muscle myopathy result from the loss of muscle RING finger 1 and 3. J Clin Invest. 2007; 117(9):2486-95.
- [11]da Silva MG, Mattos E, Camacho-Pereira J, Domitrovic T, Galina A, Costa MW et al.. Cardiac systolic dysfunction in doxorubicin-challenged rats is associated with upregulation of MuRF2 and MuRF3 E3 ligases. Exp Clin Cardiol. 2012; 17(3):101-9.
- [12]Rodríguez JE, Li L, Willis MS. Muscle ring finger-1 regulates cardiac fatty acid and glucose metabolism via its interaction with PPARalpha. FASEB J. 2010; 24:38.33.
- [13]Rodríguez JE, Li L, Willis MS. Muscle Ring Finger-1 (MuRF1), MuRF2, and MuRF3 Differentially Regulate the transcription factors PPARα, PPARγ, and PPARβ/δ, respectively, in vivo. FASEB J. 2011; 25:365.362.
- [14]Banerjee R, He J, Spaniel C, Quintana MT, Wang Z, Bain JR, Newgard CB, Muehlbauer MJ, Willis MS. Non-targeted metabolomics analysis of cardiac Muscle Ring Finger-1 (MuRF1), MuRF2, and MuRF3 in vivo reveals novel and redundant metabolic changes. Metabolomics. 2014, doi:10.1007/s11306-014-0695-1.
- [15]Battiprolu PK, Hojayev B, Jiang N, Wang ZV, Luo X, Iglewski M et al.. Metabolic stress-induced activation of FoxO1 triggers diabetic cardiomyopathy in mice. J Clin Invest. 2012; 122(3):1109-18.
- [16]Makowski L, Zhou C, Zhong Y, Kuan PF, Fan C, Sampey BP et al.. Obesity increases tumor aggressiveness in a genetically engineered mouse model of serous ovarian cancer. Gynecol Oncol. 2014; 133(1):90-7.
- [17]Vaitheesvaran B, LeRoith D, Kurland IJ. MKR mice have increased dynamic glucose disposal despite metabolic inflexibility, and hepatic and peripheral insulin insensitivity. Diabetologia. 2010; 53(10):2224-32.
- [18]Xin-Long C, Zhao-Fan X, Dao-Feng B, Jian-Guang T, Duo W. Insulin resistance following thermal injury: an animal study. Burns. 2007; 33(4):480-3.
- [19]Li LO, Ellis JM, Paich HA, Wang S, Gong N, Altshuller G et al.. Liver-specific loss of long chain acyl-CoA synthetase-1 decreases triacylglycerol synthesis and beta-oxidation and alters phospholipid fatty acid composition. J Biol Chem. 2009; 284(41):27816-26.
- [20]Furuichi Y, Goto-Inoue N, Manabe Y, Setou M, Masuda K, Fujii NL. Imaging mass spectrometry reveals fiber-specific distribution of acetylcarnitine and contraction-induced carnitine dynamics in rat skeletal muscles. Biochim Biophys Acta. 2014; 1837(10):1699-706.
- [21]Mapanga RF, Rajamani U, Dlamini N, Zungu-Edmondson M, Kelly-Laubscher R, Shafiullah M et al.. Oleanolic Acid: a novel cardioprotective agent that blunts hyperglycemia-induced contractile dysfunction. PLoS One. 2012; 7(10):e47322.
- [22]Xu L, Yates CC, Lockyer P, Xie L, Bevilacqua A, He J et al.. MMI-0100 inhibits cardiac fibrosis in myocardial infarction by direct actions on cardiomyocytes and fibroblasts via MK2 inhibition. J Mol Cell Cardiol. 2014; 77:86-101.
- [23]Yates CC, Krishna P, Whaley D, Bodnar R, Turner T, Wells A. Lack of CXC chemokine receptor 3 signaling leads to hypertrophic and hypercellular scarring. Am J Pathol. 2010; 176(4):1743-55.
- [24]Yates CC, Whaley D, Wells A. Transplanted fibroblasts prevents dysfunctional repair in a murine CXCR3-deficient scarring model. Cell Transplant. 2012; 21(5):919-31.
- [25]Roessner U, Wagner C, Kopka J, Trethewey RN, Willmitzer L. Technical advance: simultaneous analysis of metabolites in potato tuber by gas chromatography–mass spectrometry. Plant J. 2000; 23(1):131-42.
- [26]Fiehn O, Wohlgemuth G, Scholz M, Kind T, Lee Do Y, Lu Y et al.. Quality control for plant metabolomics: reporting MSI-compliant studies. Plant J. 2008; 53(4):691-704.
- [27]Kind T, Wohlgemuth G, Lee Do Y, Lu Y, Palazoglu M, Shahbaz S et al.. FiehnLib: mass spectral and retention index libraries for metabolomics based on quadrupole and time-of-flight gas chromatography/mass spectrometry. Anal Chem. 2009; 81(24):10038-48.
- [28]Banerjee R, Bultman SJ, Holley D, Hillhouse C, Bain JR, Newgard CB, Muehlbauer MJ, Willis MS. Non-targeted metabolomics of Brg1/Brm double-mutant cardiomyocytes reveals a novel role for SWI/SNF complexes in metabolic homeostasis. Metabolomics. 2015; doi:10.1007/s11306-015-0786-7.
- [29]Xia J, Mandal R, Sinelnikov IV, Broadhurst D, Wishart DS. MetaboAnalyst 2.0--a comprehensive server for metabolomic data analysis. Nucleic Acids Res. 2012; 40(Web Server issue):W127-33.
- [30]Xia J, Psychogios N, Young N, Wishart DS. MetaboAnalyst: a web server for metabolomic data analysis and interpretation. Nucleic Acids Res. 2009; 37(Web Server issue):W652-60.
- [31]Lee TI, Kao YH, Chen YC, Huang JH, Hsiao FC, Chen YJ. Peroxisome proliferator-activated receptors modulate cardiac dysfunction in diabetic cardiomyopathy. Diabetes Res Clin Pract. 2013; 100(3):330-9.
- [32]Cox EJ, Marsh SA. A systematic review of fetal genes as biomarkers of cardiac hypertrophy in rodent models of diabetes. PLoS One. 2014; 9(3):e92903.
- [33]Poornima IG, Parikh P, Shannon RP. Diabetic cardiomyopathy: the search for a unifying hypothesis. Circ Res. 2006; 98(5):596-605.
- [34]Isfort M, Stevens SC, Schaffer S, Jong CJ, Wold LE. Metabolic dysfunction in diabetic cardiomyopathy. Heart Fail Rev. 2014; 19(1):35-48.
- [35]Eguchi K, Boden-Albala B, Jin Z, Rundek T, Sacco RL, Homma S et al.. Association between diabetes mellitus and left ventricular hypertrophy in a multiethnic population. Am J Cardiol. 2008; 101(12):1787-91.
- [36]Sacre JW, Jellis CL, Jenkins C, Haluska BA, Baumert M, Coombes JS et al.. A six-month exercise intervention in subclinical diabetic heart disease: effects on exercise capacity, autonomic and myocardial function. Metabolism. 2014; 63(9):1104-14.
- [37]Nakanishi T, Kato S. Impact of diabetes mellitus on myocardial lipid deposition: an autopsy study. Pathol Res Pract. 2014; 210(12):1018-25.
- [38]Burkart EM, Sambandam N, Han X, Gross RW, Courtois M, Gierasch CM et al.. Nuclear receptors PPARbeta/delta and PPARalpha direct distinct metabolic regulatory programs in the mouse heart. J Clin Invest. 2007; 117(12):3930-9.
- [39]Son NH, Park TS, Yamashita H, Yokoyama M, Huggins LA, Okajima K et al.. Cardiomyocyte expression of PPARgamma leads to cardiac dysfunction in mice. J Clin Invest. 2007; 117(10):2791-801.
- [40]Liu S, Hatano B, Zhao M, Yen CC, Kang K, Reilly SM et al.. Role of peroxisome proliferator-activated receptor {delta}/{beta} in hepatic metabolic regulation. J Biol Chem. 2011; 286(2):1237-47.
- [41]Okere IC, Chandler MP, McElfresh TA, Rennison JH, Sharov V, Sabbah HN et al.. Differential effects of saturated and unsaturated fatty acid diets on cardiomyocyte apoptosis, adipose distribution, and serum leptin. Am J Physiol Heart Circ Physiol. 2006; 291(1):H38-44.
- [42]Wang H, Sreenivasan U, Hu H, Saladino A, Polster BM, Lund LM et al.. Perilipin 5, a lipid droplet-associated protein, provides physical and metabolic linkage to mitochondria. J Lipid Res. 2011; 52(12):2159-68.
- [43]Son NH, Yu S, Tuinei J, Arai K, Hamai H, Homma S et al.. PPARgamma-induced cardiolipotoxicity in mice is ameliorated by PPARalpha deficiency despite increases in fatty acid oxidation. J Clin Invest. 2010; 120(10):3443-54.
- [44]Stanley WC, Recchia FA. Lipotoxicity and the development of heart failure: moving from mouse to man. Cell Metab. 2010; 12(6):555-6.
- [45]Reichelt ME, Mellor KM, Curl CL, Stapleton D, Delbridge LM. Myocardial glycophagy - a specific glycogen handling response to metabolic stress is accentuated in the female heart. J Mol Cell Cardiol. 2013; 65:67-75.
- [46]Luo B, Li B, Wang W, Liu X, Xia Y, Zhang C et al.. NLRP3 gene silencing ameliorates diabetic cardiomyopathy in a type 2 diabetes rat model. PLoS One. 2014; 9(8):e104771.
- [47]Thomas CM, Yong QC, Mattar Rosa R, Seqqat R, Gopal S, Casarini DE, Jones WK, Gupta S, Baker KM, Kumar R: Cardiac-specific Suppression of NF-kappaB Signaling Prevents Diabetic Cardiomyopathy via Inhibition of the Renin-Angiotensin System. Am J Physiol Heart Circ Physiol. 2014;307(7):H1036-45.
- [48]Wang Y, Zhou S, Sun W, McClung K, Pan Y, Liang G et al.. Inhibition of JNK by novel curcumin analog C66 prevents diabetic cardiomyopathy with a preservation of cardiac metallothionein expression. Am J Physiol Endocrinol Metab. 2014; 306(11):E1239-47.
- [49]Aguilar H, Fricovsky E, Ihm S, Schimke M, Maya-Ramos L, Aroonsakool N et al.. Role for high-glucose-induced protein O-GlcNAcylation in stimulating cardiac fibroblast collagen synthesis. Am J Physiol Cell Physiol. 2014; 306(9):C794-804.
- [50]Marsh SA, Powell PC, Dell’italia LJ, Chatham JC. Cardiac O-GlcNAcylation blunts autophagic signaling in the diabetic heart. Life Sci. 2013; 92(11):648-56.
- [51]Kim HS, Woo JS, Joo HJ, Moon WK. Cardiac transcription factor Nkx2.5 is downregulated under excessive O-GlcNAcylation condition. PLoS One. 2012; 7(6):e38053.
- [52]Ruan HB, Nie Y, Yang X. Regulation of protein degradation by O-GlcNAcylation: crosstalk with ubiquitination. Mol Cell Proteomics. 2013; 12(12):3489-97.
- [53]Yokoe S, Asahi M, Takeda T, Otsu K, Taniguchi N, Miyoshi E et al.. Inhibition of phospholamban phosphorylation by O-GlcNAcylation: implications for diabetic cardiomyopathy. Glycobiology. 2010; 20(10):1217-26.
- [54]Srivastava RA, Jahagirdar R, Azhar S, Sharma S, Bisgaier CL. Peroxisome proliferator-activated receptor-alpha selective ligand reduces adiposity, improves insulin sensitivity and inhibits atherosclerosis in LDL receptor-deficient mice. Mol Cell Biochem. 2006; 285(1–2):35-50.
- [55]Shiels H, O’Connell A, Qureshi MA, Howarth FC, White E, Calaghan S. Stable microtubules contribute to cardiac dysfunction in the streptozotocin-induced model of type 1 diabetes in the rat. Mol Cell Biochem. 2007; 294(1–2):173-80.
- [56]Howarth FC, Qureshi MA, White E, Calaghan SC. Cardiac microtubules are more resistant to chemical depolymerisation in streptozotocin-induced diabetes in the rat. Pflugers Arch. 2002; 444(3):432-7.
- [57]Shimoni Y, Rattner JB. Type 1 diabetes leads to cytoskeleton changes that are reflected in insulin action on rat cardiac K(+) currents. Am J Physiol Endocrinol Metab. 2001; 281(3):E575-85.
- [58]Shan ZX, Lin QX, Deng CY, Zhu JN, Mai LP, Liu JL et al.. miR-1/miR-206 regulate Hsp60 expression contributing to glucose-mediated apoptosis in cardiomyocytes. FEBS Lett. 2010; 584(16):3592-600.
- [59]Madonna R, Geng YJ, Bolli R, Rokosh G, Ferdinandy P, Patterson C et al.. Co-activation of nuclear factor-kappaB and myocardin/serum response factor conveys the hypertrophy signal of high insulin levels in cardiac myoblasts. J Biol Chem. 2014; 289(28):19585-98.
- [60]Drawnel FM, Boccardo S, Prummer M, Delobel F, Graff A, Weber M et al.. Disease modeling and phenotypic drug screening for diabetic cardiomyopathy using human induced pluripotent stem cells. Cell Rep. 2014; 9(3):810-21.
- [61]Chiu J, Farhangkhoee H, Xu BY, Chen S, George B, Chakrabarti S. PARP mediates structural alterations in diabetic cardiomyopathy. J Mol Cell Cardiol. 2008; 45(3):385-93.
- [62]Vara D, Bicknell KA, Coxon CH, Brooks G. Inhibition of E2F abrogates the development of cardiac myocyte hypertrophy. J Biol Chem. 2003; 278(24):21388-94.
- [63]Wadosky KM, Willis MS. The story so far: post-translational regulation of peroxisome proliferator-activated receptors by ubiquitination and SUMOylation. Am J Physiol Heart Circ Physiol. 2012; 302(3):H515-26.
- [64]den Besten W, Kuo ML, Tago K, Williams RT, Sherr CJ. Ubiquitination of, and sumoylation by, the Arf tumor suppressor. Isr Med Assoc J. 2006; 8(4):249-51.
- [65]Thrower JS, Hoffman L, Rechsteiner M, Pickart CM. Recognition of the polyubiquitin proteolytic signal. EMBO J. 2000; 19(1):94-102.
- [66]Buchberger A. From UBA to UBX: new words in the ubiquitin vocabulary. Trends Cell Biol. 2002; 12(5):216-21.
- [67]Jackman RW, Kandarian SC. The molecular basis of skeletal muscle atrophy. Am J Physiol Cell Physiol. 2004; 287(4):C834-43.
- [68]Plutzky J. The PPAR-RXR transcriptional complex in the vasculature: energy in the balance. Circ Res. 2011; 108(8):1002-16.
- [69]Kouzu H, Miki T, Tanno M, Kuno A, Yano T, Itoh T et al.. Excessive degradation of adenine nucleotides by up-regulated AMP deaminase underlies afterload-induced diastolic dysfunction in the type 2 diabetic heart. J Mol Cell Cardiol. 2015; 80:136-45.
- [70]Jabs CM, Sigurdsson GH, Neglen P. Plasma levels of high-energy compounds compared with severity of illness in critically ill patients in the intensive care unit. Surgery. 1998; 124(1):65-72.
- [71]Russell RR, Taegtmeyer H. Changes in citric acid cycle flux and anaplerosis antedate the functional decline in isolated rat hearts utilizing acetoacetate. J Clin Invest. 1991; 87(2):384-90.