期刊论文详细信息
BMC Veterinary Research
Development of a nanoparticle-assisted PCR (nanoPCR) assay for detection of mink enteritis virus (MEV) and genetic characterization of the NS1 gene in four Chinese MEV strains
Shipeng Cheng2  Mingwei Tong2  Li Yi2  Peng Lin2  Hang Zhao2  Miao Zhang1  Yuening Cheng1  Jianke Wang2 
[1] Jilin Teyan Biological Technology Company, Changchun 130122, China;State Key Laboratory for Molecular Biology of Special Economic Animals, Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun 130112, China
关键词: China type;    Genetic characterization;    Nonstructural protein 1 gene;    Mink enteritis virus;    Nanoparticle-assisted PCR;   
Others  :  1091220
DOI  :  10.1186/s12917-014-0312-6
 received in 2014-08-09, accepted in 2014-12-18,  发布年份 2015
PDF
【 摘 要 】

Background

Mink enteritis virus (MEV) causes mink viral enteritis, an acute and highly contagious disease whose symptoms include violent diarrhea, and which is characterized by high morbidity and mortality. Nanoparticle-assisted polymerase chain reaction (nanoPCR) is a recently developed technique for the rapid detection of bacterial and viral DNA. Here we describe a novel nanoPCR assay for the clinical detection and epidemiological characterization of MEV.

Results

This assay is based upon primers specific for the conserved region of the MEV NS1 gene, which encodes nonstructural protein 1. Under optimized conditions, the MEV nanoPCR assay had a detection limit of 8.75 × 101 copies recombinant plasmids per reaction, compared with 8.75 × 103 copies for conventional PCR analysis. Moreover, of 246 clinical mink samples collected from five provinces in North-Eastern China, 50.8% were scored MEV positive by our nanoPCR assay, compared with 32.5% for conventional PCR. Furthermore no cross reactivity was observed for the nanoPCR assay with respect to related viruses, including canine distemper virus (CDV) and Aleutian mink disease parvovirus (AMDV). Phylogenetic analysis of four Chinese wild type MEV isolates using the nanoPCR assay indicated that they belonged to a small MEV clade, named “China type”, in the MEV/FPLV cluster, and were closely clustered in the same location.

Conclusions

Our results indicate that the MEV China type clade is currently circulating in domestic minks in China. We anticipate that the nanoPCR assay we have described here will be useful for the detection and epidemiological and pathological characterization of MEV.

【 授权许可】

   
2015 Wang et al.; licensee BioMed Central.

【 预 览 】
附件列表
Files Size Format View
20150128170408698.pdf 900KB PDF download
Figure 5. 49KB Image download
Figure 4. 10KB Image download
Figure 3. 18KB Image download
Figure 2. 8KB Image download
Figure 1. 15KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

【 参考文献 】
  • [1]Decaro N, Buonavoglia C: Canine parvovirus–a review of epidemiological and diagnostic aspects, with emphasis on type 2c. Vet Microbiol 2012, 155(1):1-12.
  • [2]Steinel A, Parrish CR, Bloom ME, Truyen U: Parvovirus infections in wild carnivores. J Wildl Dis 2001, 37(3):594-607.
  • [3]Kariatsumari T, Horiuchi M, Hama E, Yaguchi K, Ishigurio N, Goto H, Shinagawa M: Construction and nucleotide sequence analysis of an infectious DNA clone of the autonomous parvovirus, mink enteritis virus. J Gen Virol 1991, 72(Pt 4):867-875.
  • [4]Wang J, Cheng S, Yi L, Cheng Y, Yang S, Xu H, Li Z, Shi X, Wu H, Yan X: Detection of mink enteritis virus by loop-mediated isothermal amplification (LAMP). J Virol Methods 2013, 187(2):401-405.
  • [5]Schofield FW: Virus enteritis in mink. N Am Vet 1949, 30:651-654.
  • [6]Wills CG: Notes on infectious enteritis of mink and its relationship to feline enteritis. Can J Comp Med Vet Sci 1952, 16(12):419-420.
  • [7]Jiang TX, Pu HK, Wang L, Wang Y: Preliminary report about mink viral enteritis disease. Fur animals 1981, 2:4-6.
  • [8]Hundt B, Best C, Schlawin N, Kassner H, Genzel Y, Reichl U: Establishment of a mink enteritis vaccine production process in stirred-tank reactor and Wave Bioreactor microcarrier culture in 1–10 L scale. Vaccine 2007, 25(20):3987-3995.
  • [9]Shen DT, Ward AC, Gorham JR: Detection of mink enteritis virus in mink feces, using enzyme-linked immunosorbent assay, hemagglutination, and electron microscopy. Am J Vet Res 1986, 47(9):2025-2030.
  • [10]Veijalainen PM, Neuvonen E, Niskanen A, Juokslahti T: Latex agglutination test for detecting feline panleukopenia virus, canine parvovirus, and parvoviruses of fur animals. J Clin Microbiol 1986, 23(3):556-559.
  • [11]Uttenthal A, Larsen S, Lund E, Bloom ME, Storgard T, Alexandersen S: Analysis of experimental mink enteritis virus infection in mink: in situ hybridization, serology, and histopathology. J Virol 1990, 64(6):2768-2779.
  • [12]Wang JK, Cheng SP, Yi L, Yang S, Luo B, Xu HL, Yan XJ, Wu H: Establishment of double antibody sandwich ELISA for detection of mink enteritis virus. Chin Vet Sci 2011, 41(2):183-187.
  • [13]Wang JK, Cheng SP, Yang S, Yi L, Xu HL, Cheng YN, Shi XC, Wu H, Yan XJ: Establishment of PCR-RFLP for differentiation of mink enteritis virus vaccine strain and wild strain. Chin Vet Sci 2012, 42(3):264-267.
  • [14]Zhang HL, Yan XJ, Chai XL, Wu W, Yi L, Luo GL, Tian HY, Shao XQ, Wang FX: Establishment and application of PCR for detection of mink enteritis virus. Special Wild Econ Animal Plant Res 2007, 29(2):1-3.
  • [15]Rivera E, Sundquist B: A non-haemagglutinating isolate of mink enteritis virus. Vet Microbiol 1984, 9(4):345-353.
  • [16]Chen T, Zhao JJ, Zhang HL, Chai XL, Yan XJ, Wu W, Qian AD: Prokaryotic expression of mink enteritis virus VP2 gene and establishment of indirect ELISA. Chin J Prev Vet Med 2009, 31(9):712-716.
  • [17]Cui Y, Wang Z, Ma X, Liu J, Cui S: A sensitive and specific nanoparticle-assisted PCR assay for rapid detection of porcine parvovirus. Lett Appl Microbiol 2014, 58(2):163-167.
  • [18]Elia G, Cavalli A, Desario C, Lorusso E, Lucente MS, Decaro N, Martella V, Buonavoglia C: Detection of infectious canine parvovirus type 2 by mRNA real-time RT-PCR. J Virol Methods 2007, 146(1–2):202-208.
  • [19]Kumar M, Nandi S: Development of a SYBR Green based real-time PCR assay for detection and quantitation of canine parvovirus in faecal samples. J Virol Methods 2010, 169(1):198-201.
  • [20]Mech LD, Almberg ES, Smith D, Goyal S, Singer RS: Use of real-time PCR to detect canine parvovirus in feces of free-ranging wolves. J Wildl Dis 2012, 48(2):473-476.
  • [21]Chen HY, Li XK, Cui BA, Wei ZY, Li XS, Wang YB, Zhao L, Wang ZY: A TaqMan-based real-time polymerase chain reaction for the detection of porcine parvovirus. J Virol Methods 2009, 156(1–2):84-88.
  • [22]Perez LJ, Perera CL, Frias MT, Nunez JI, Ganges L, de Arce HD: A multiple SYBR Green I-based real-time PCR system for the simultaneous detection of porcine circovirus type 2, porcine parvovirus, pseudorabies virus and Torque teno sus virus 1 and 2 in pigs. J Virol Methods 2012, 179(1):233-241.
  • [23]Song C, Zhu C, Zhang C, Cui S: Detection of porcine parvovirus using a taqman-based real-time pcr with primers and probe designed for the NS1 gene. Virol J 2010, 7:353. BioMed Central Full Text
  • [24]Koppelman MH, van Swieten P, Cuijpers HT: Real-time polymerase chain reaction detection of parvovirus B19 DNA in blood donations using a commercial and an in-house assay. Transfusion 2011, 51(6):1346-1354.
  • [25]Zaki SA: Detection of human parvovirus B19 in cancer patients using ELISA and real-time PCR. Indian J Med Microbiol 2012, 30(4):407-410.
  • [26]Vaisanen E, Lahtinen A, Eis-Hubinger AM, Lappalainen M, Hedman K, Soderlund-Venermo M: A two-step real-time PCR assay for quantitation and genotyping of human parvovirus 4. J Virol Methods 2014, 195:106-111.
  • [27]Shen C, Zhang Z: An Overview of Nanoparticle-Assisted Polymerase Chain Reaction Technology. In Bio-Nanotechnology: A Revolution in Food, Biomedical and Health Sciences. Edited by Bagchi D, Bagchi M, Moriyama H, Shahidi F. Blackwell Publishing Ltd, Oxford; 2013:97-106.
  • [28]Ma XJ, Cui YC, Qiu Z, Zhang BK, Cui SJ: A nanoparticle-assisted PCR assay to improve the sensitivity for rapid detection and differentiation of wild-type pseudorabies virus and gene-deleted vaccine strains. J Virol Methods 2013, 193(2):374-378.
  • [29]Xu SY, Yao MS: NanoPCR detection of bacterial aerosols. J Aerosol Sci 2013, 65:1-9.
  • [30]Wang X, Bai A, Zhang J, Kong M, Cui Y, Ma X, Ai X, Tang Q, Cui S: A new nanoPCR molecular assay for detection of porcine bocavirus. J Virol Methods 2014, 202:106-111.
  • [31]Wang J, Cheng S, Yi L, Cheng Y, Yang S, Xu H, Zhao H, Yan X, Wu H: Evidence for natural recombination between mink enteritis virus and canine parvovirus. Virol J 2012, 9(1):252. BioMed Central Full Text
  • [32]Sun JZ, Wang J, Yuan D, Wang S, Li Z, Yi B, Mao Y, Hou Q, Liu W: Cellular microRNA miR-181b Inhibits Replication of Mink Enteritis Virus by Repression of Non-Structural Protein 1 Translation. PLoS One 2013, 8(12):e81515.
  • [33]Zhang QM, Wang YP, Ji Q, Gu JM, Liu SS, Feng X, Sun CJ, Li YY, Lei LC: Selection of antiviral peptides against mink enteritis virus using a phage display peptide library. Curr Microbiol 2013, 66(4):379-384.
  • [34]Liu WQ, Fan QS, Jiang Y, Xia XZ, Huang G, Wang JG, Fang JB, Wang L: Establishment of a commonly used PCR technique for detection of carnivore parvoviruses. Chin J Vet Sci 2001, 21(3):249-251.
  • [35]Yi L, Cheng S, Xu H, Wang J, Cheng Y, Yang S, Luo B: Development of a combined canine distemper virus specific RT-PCR protocol for the differentiation of infected and vaccinated animals (DIVA) and genetic characterization of the hemagglutinin gene of seven Chinese strains demonstrated in dogs. J Virol Methods 2012, 179(1):281-287.
  文献评价指标  
  下载次数:23次 浏览次数:3次