Journal of Experimental & Clinical Cancer Research | |
Identification of intrinsic subtype-specific prognostic microRNAs in primary glioblastoma | |
Yongping You1  WenKang Luan1  Qingsheng Dong1  Yan Shi1  Xiefeng Wang1  Hui Luo1  Kaiming Gao1  Rui Li1  | |
[1] Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, No.300, Guangzhou Road, Gulou District, Nanjing 210029, PR China | |
关键词: Prognostic stratification; miRNA; Glioblastoma; | |
Others : 804718 DOI : 10.1186/1756-9966-33-9 |
|
received in 2013-12-23, accepted in 2014-01-13, 发布年份 2014 | |
【 摘 要 】
Background
Glioblastoma multiforme (GBM) is the most malignant type of glioma. Integrated classification based on mRNA expression microarrays and whole–genome methylation subdivides GBM into five subtypes: Classical, Mesenchymal, Neural, Proneural-CpG island methylator phenotype (G-CIMP) and Proneural-non G-CIMP. Biomarkers that can be used to predict prognosis in each subtype have not been systematically investigated.
Methods
In the present study, we used Cox regression and risk-score analysis to construct respective prognostic microRNA (miRNA) signatures in the five intrinsic subtypes of primary glioblastoma in The Cancer Genome Atlas (TCGA) dataset.
Results
Patients who had high-risk scores had poor overall survival compared with patients who had low-risk scores. The prognostic miRNA signature for the Mesenchymal subtype (four risky miRNAs: miR-373, miR-296, miR-191, miR-602; one protective miRNA: miR-223) was further validated in an independent cohort containing 41 samples.
Conclusion
We report novel diagnostic tools for deeper prognostic sub-stratification in GBM intrinsic subtypes based upon miRNA expression profiles and believe that such signature could lead to more individualized therapies to improve survival rates and provide a potential platform for future studies on gene treatment for GBM.
【 授权许可】
2014 Li et al.; licensee BioMed Central Ltd.
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
20140708064527288.pdf | 1120KB | download | |
Figure 3. | 62KB | Image | download |
Figure 2. | 94KB | Image | download |
Figure 1. | 177KB | Image | download |
【 图 表 】
Figure 1.
Figure 2.
Figure 3.
【 参考文献 】
- [1]Penas-Prado M, Armstrong TS, Gilbert MR: Glioblastoma. Handb Clin Neurol 2012, 105:485-506.
- [2]Omuro A, DeAngelis LM: Glioblastoma and other malignant gliomas: a clinical review. JAMA 2013, 310:1842-1850.
- [3]Belden CJ, Valdes PA, Ran C, Pastel DA, Harris BT, Fadul CE, Israel MA, Paulsen K, Roberts DW: Genetics of glioblastoma: a window into its imaging and histopathologic variability. Radiographics 2011, 31:1717-1740.
- [4]Rao SA, Santosh V, Somasundaram K: Genome-wide expression profiling identifies deregulated miRNAs in malignant astrocytoma. Mod Pathol 2010, 23:1404-1417.
- [5]Ashton CH, Rawlins MD, Tyrer SP: Buspirone in benzodiazepine withdrawal. Br J Psychiatry 1991, 158:283-284.
- [6]Brennan CW, Verhaak RG, McKenna A, Campos B, Noushmehr H, Salama SR, Zheng S, Chakravarty D, Sanborn JZ, Berman SH, et al.: The somatic genomic landscape of glioblastoma. Cell 2013, 155:462-477.
- [7]Zhang W, Zhang J, Yan W, You G, Bao Z, Li S, Kang C, Jiang C, You Y, Zhang Y, et al.: Whole-genome microRNA expression profiling identifies a 5-microRNA signature as a prognostic biomarker in Chinese patients with primary glioblastoma multiforme. Cancer 2013, 119:814-824.
- [8]Chen SY, Su YH, Wu SF, Sha T, Zhang YP: Mitochondrial diversity and phylogeographic structure of Chinese domestic goats. Mol Phylogenet Evol 2005, 37:804-814.
- [9]Livak KJ, Schmittgen TD: Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 2001, 25:402-408.
- [10]Simon R, Lam A, Li MC, Ngan M, Menenzes S, Zhao Y: Analysis of gene expression data using BRB-ArrayTools. Canc Informat 2007, 3:11-17.
- [11]Dave SS, Wright G, Tan B, Rosenwald A, Gascoyne RD, Chan WC, Fisher RI, Braziel RM, Rimsza LM, Grogan TM, et al.: Prediction of survival in follicular lymphoma based on molecular features of tumor-infiltrating immune cells. N Engl J Med 2004, 351:2159-2169.
- [12]Zhao Q, Sun J: Cox survival analysis of microarray gene expression data using correlation principal component regression. Stat Appl Genet Mol Biol 2007, 6: . Article16
- [13]Ohgaki H, Kleihues P: Population-based studies on incidence, survival rates, and genetic alterations in astrocytic and oligodendroglial gliomas. J Neuropathol Exp Neurol 2005, 64:479-489.
- [14]Ohgaki H, Dessen P, Jourde B, Horstmann S, Nishikawa T, Di Patre PL, Burkhard C, Schuler D, Probst-Hensch NM, Maiorka PC, et al.: Genetic pathways to glioblastoma: a population-based study. Cancer Res 2004, 64:6892-6899.
- [15]Verhaak RG, Hoadley KA, Purdom E, Wang V, Qi Y, Wilkerson MD, Miller CR, Ding L, Golub T, Mesirov JP, et al.: Integrated genomic analysis identifies clinically relevant subtypes of glioblastoma characterized by abnormalities in PDGFRA, IDH1, EGFR, and NF1. Cancer cell 2010, 17:98-110.
- [16]Yan W, Zhang W, Jiang T: Oncogene addiction in gliomas: implications for molecular targeted therapy. J Exp Clin Cancer Res 2011, 30:58. BioMed Central Full Text
- [17]Yan W, Zhang W, You G, Zhang J, Han L, Bao Z, Wang Y, Liu Y, Jiang C, Kang C, et al.: Molecular classification of gliomas based on whole genome gene expression: a systematic report of 225 samples from the Chinese Glioma Cooperative Group. Neuro Oncol 2012, 14:1432-1440.
- [18]Li A, Walling J, Ahn S, Kotliarov Y, Su Q, Quezado M, Oberholtzer JC, Park J, Zenklusen JC, Fine HA: Unsupervised analysis of transcriptomic profiles reveals six glioma subtypes. Cancer Res 2009, 69:2091-2099.
- [19]Noushmehr H, Weisenberger DJ, Diefes K, Phillips HS, Pujara K, Berman BP, Pan F, Pelloski CE, Sulman EP, Bhat KP, et al.: Identification of a CpG island methylator phenotype that defines a distinct subgroup of glioma. Cancer cell 2010, 17:510-522.
- [20]Zhang W, Yan W, You G, Bao Z, Wang Y, Liu Y, You Y, Jiang T: Genome-wide DNA methylation profiling identifies ALDH1A3 promoter methylation as a prognostic predictor in G-CIMP- primary glioblastoma. Cancer Lett 2013, 328:120-125.
- [21]Phillips HS, Kharbanda S, Chen R, Forrest WF, Soriano RH, Wu TD, Misra A, Nigro JM, Colman H, Soroceanu L, et al.: Molecular subclasses of high-grade glioma predict prognosis, delineate a pattern of disease progression, and resemble stages in neurogenesis. Cancer cell 2006, 9:157-173.
- [22]Theeler BJ, Yung WK, Fuller GN, De Groot JF: Moving toward molecular classification of diffuse gliomas in adults. Neurology 2012, 79:1917-1926.
- [23]Li B, Senbabaoglu Y, Peng W, Yang ML, Xu J, Li JZ: Genomic estimates of aneuploid content in glioblastoma multiforme and improved classification. Clin Cancer Res 2012, 18:5595-5605.
- [24]Cohen AL, Holmen SL, Colman H: IDH1 and IDH2 mutations in gliomas. Curr Neurol Neurosci Rep 2013, 13:345.
- [25]Ducray F, Idbaih A, Wang XW, Cheneau C, Labussiere M, Sanson M: Predictive and prognostic factors for gliomas. Expert Rev Anticancer Ther 2011, 11:781-789.