期刊论文详细信息
Journal of Hematology & Oncology
Transfer of microRNAs by extracellular membrane microvesicles: a nascent crosstalk model in tumor pathogenesis, especially tumor cell-microenvironment interactions
Ling Pan2  Pu-Jun Guan2  Meng Chen1  Biao Dong3  C Alexander Valencia3  Li Zhang2 
[1] State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China;Department of Hematology, West China Hospital, Sichuan University, Chengdu 610041, China;Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati 45229, Ohio, USA
关键词: Microenvironment;    Tumor;    miRNA;    MicroRNA;    Exosome;    Microvesicle;   
Others  :  1133359
DOI  :  10.1186/s13045-015-0111-y
 received in 2014-11-07, accepted in 2015-01-14,  发布年份 2015
PDF
【 摘 要 】

Anticancer treatments aiming at killing malignant cells have been applied for decades but have been unsuccessful at curing the disease. The modern concept of tumor microenvironment, especially angiogenesis, suggests that the tumor is not only composed of malignant cells, but also consists of other groups of cells that work together. Recently, genetic message transfer has been revealed between tumor cells and their microenvironment. The latest cell-derived vector, extracellular membrane microvesicles (EMVs), has been found to provide membrane protection and allowed to deliver genetic information beyond the cells. Additionally, EMV-associated microRNAs are involved in a variety of cellular pathways for tumor initiation and progression. Previous published reviews have focused on miRNA that included EMVs as a sensitive marker for tumor monitoring in clinical applications that are based on the alteration of their expression levels in conjunction with disease occurrence and progression. From the aspect of cellular crosstalk, this article will review the role of EMV-mediated microRNA transfer in tumor pathogenesis, including tumor treatment obstacles, history and features, and current research in inflammatory/immune pathologies, as well as in solid tumors and hematological malignancies. This nascent crosstalk model will provide a novel insight into complementing the classic mechanisms of intercellular communication and contribute to the potential therapeutic strategy via small RNA molecule-carrying EMVs for multimodality treatment of cancer.

【 授权许可】

   
2015 Zhang et al.; licensee BioMed Central.

【 预 览 】
附件列表
Files Size Format View
20150304142750470.pdf 523KB PDF download
Figure 1. 21KB Image download
【 图 表 】

Figure 1.

【 参考文献 】
  • [1]John SP: Retinal and choroidal angiogenesis. Springer, Berlin; 2008.
  • [2]Lord EM, Penney DP, Sutherland RM, Cooper RA Jr: Morphological and functional characteristics of cells infiltrating and destroying tumor multicellular spheroids in vivo. Virchows Arch B Cell Pathol Incl Mol Pathol. 1979, 31:103-16.
  • [3]Verloes R, Kanarek L: Tumour microenvironment studies open new perspectives for immunotherapy. Arch Int Physiol Biochim. 1976, 84:420-2.
  • [4]Ra W: Pathology of tumours. Butterworth, London; 1948.
  • [5]Greenfield JP, Cobb WS, Lyden D: Resisting arrest: a switch from angiogenesis to vasculogenesis in recurrent malignant gliomas. J Clin Invest. 2010, 120:663-7.
  • [6]Lyden D, Hattori K, Dias S, Costa C, Blaikie P, Butros L, et al.: Impaired recruitment of bone-marrow-derived endothelial and hematopoietic precursor cells blocks tumor angiogenesis and growth. Nat Med. 2001, 7:1194-201.
  • [7]Streubel B, Chott A, Huber D, Exner M, Jager U, Wagner O, et al.: Lymphoma-specific genetic aberrations in microvascular endothelial cells in B-cell lymphomas. N Engl J Med. 2004, 351:250-9.
  • [8]Hida K, Klagsbrun M: A new perspective on tumor endothelial cells: unexpected chromosome and centrosome abnormalities. Cancer Res. 2005, 65:2507-10.
  • [9]Rigolin GM, Fraulini C, Ciccone M, Mauro E, Bugli AM, De Angeli C, et al.: Neoplastic circulating endothelial cells in multiple myeloma with 13q14 deletion. Blood. 2006, 107:2531-5.
  • [10]Akers JC, Gonda D, Kim R, Carter BS, Chen CC: Biogenesis of extracellular vesicles (EV): exosomes, microvesicles, retrovirus-like vesicles, and apoptotic bodies. J Neurooncol. 2013, 113:1-11.
  • [11]Camussi G, Deregibus MC, Bruno S, Cantaluppi V, Biancone L: Exosomes/microvesicles as a mechanism of cell-to-cell communication. Kidney Int. 2010, 78:838-48.
  • [12]Ghosh AK, Secreto CR, Knox TR, Ding W, Mukhopadhyay D, Kay NE: Circulating microvesicles in B-cell chronic lymphocytic leukemia can stimulate marrow stromal cells: implications for disease progression. Blood. 2010, 115:1755-64.
  • [13]Balaj L, Lessard R, Dai L, Cho YJ, Pomeroy SL, Breakefield XO, et al.: Tumour microvesicles contain retrotransposon elements and amplified oncogene sequences. Nat Commun. 2011, 2:180.
  • [14]Chargaff E, West R: The biological significance of the thromboplastic protein of blood. J Bio Chem 1946, 166:189-97.
  • [15]Wolf P: The nature and significance of platelet products in human plasma. Br J Haematol. 1967, 13:269-88.
  • [16]Johnstone RM, Adam M, Hammond JR, Orr L, Turbide C: Vesicle formation during reticulocyte maturation. Association of plasma membrane activities with released vesicles (exosomes). J Bio Chem 1987, 262:9412-20.
  • [17]Robbins PD, Morelli AE: Regulation of immune responses by extracellular vesicles. Nat Rev Immunol. 2014, 14:195-208.
  • [18]Malkki H: Neuro-oncology: novel biomarkers for high-grade astrocytoma. Nat Rev Neurol. 2014, 10:121.
  • [19]Lemoinne S, Thabut D, Housset C, Moreau R, Valla D, Boulanger CM, et al.: The emerging roles of microvesicles in liver diseases. Nat Rev Gastroenterol Hepatol. 2014, 11:350-61.
  • [20]Salih M, Zietse R, Hoorn EJ: Urinary extracellular vesicles and the kidney: biomarkers and beyond. Am J Physiol 2014, 306:F1251-9.
  • [21]Thery C, Amigorena S, Raposo G, Clayton A. Isolation and characterization of exosomes from cell culture supernatants and biological fluids. Curr Protoc Cell Biol. 2006;Chapter 3:Unit 3 22.
  • [22]Huang X, Yuan T, Tschannen M, Sun Z, Jacob H, Du M, et al.: Characterization of human plasma-derived exosomal RNAs by deep sequencing. BMC Genomics. 2013, 14:319. BioMed Central Full Text
  • [23]Lewis BP, Shih IH, Jones-Rhoades MW, Bartel DP, Burge CB: Prediction of mammalian microRNA targets. Cell. 2003, 115:787-98.
  • [24]Lewis BP, Burge CB, Bartel DP: Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell. 2005, 120:15-20.
  • [25]John B, Enright AJ, Aravin A, Tuschl T, Sander C, Marks DS: Human microRNA targets. PLoS Biol. 2004, 2:e363.
  • [26]Valadi H, Ekstrom K, Bossios A, Sjostrand M, Lee JJ, Lotvall JO: Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nat Cell Biol. 2007, 9:654-9.
  • [27]Hunter MP, Ismail N, Zhang X, Aguda BD, Lee EJ, Yu L, et al.: Detection of microRNA expression in human peripheral blood microvesicles. PLoS ONE. 2008, 3:e3694.
  • [28]Skog J, Wurdinger T, van Rijn S, Meijer DH, Gainche L, Sena-Esteves M, et al.: Glioblastoma microvesicles transport RNA and proteins that promote tumour growth and provide diagnostic biomarkers. Nat Cell Biol. 2008, 10:1470-6.
  • [29]Noerholm M, Balaj L, Limperg T, Salehi A, Zhu LD, Hochberg FH, et al.: RNA expression patterns in serum microvesicles from patients with glioblastoma multiforme and controls. BMC Cancer. 2012, 12:22. BioMed Central Full Text
  • [30]Fourcade O, Simon MF, Viode C, Rugani N, Leballe F, Ragab A, et al.: Secretory phospholipase A2 generates the novel lipid mediator lysophosphatidic acid in membrane microvesicles shed from activated cells. Cell. 1995, 80:919-27.
  • [31]Trajkovic K, Hsu C, Chiantia S, Rajendran L, Wenzel D, Wieland F, et al.: Ceramide triggers budding of exosome vesicles into multivesicular endosomes. Science. 2008, 319:1244-7.
  • [32]Chen X, Liang H, Zhang J, Zen K, Zhang CY: Horizontal transfer of microRNAs: molecular mechanisms and clinical applications. Protein Cell. 2012, 3:28-37.
  • [33]Duttagupta R, Jiang R, Gollub J, Getts RC, Jones KW: Impact of cellular miRNAs on circulating miRNA biomarker signatures. PLoS ONE. 2011, 6:e20769.
  • [34]Zhang Y, Liu D, Chen X, Li J, Li L, Bian Z, et al.: Secreted monocytic miR-150 enhances targeted endothelial cell migration. Mol Cell. 2010, 39:133-44.
  • [35]Jaworski E, Narayanan A, Van Duyne R, Shabbeer-Meyering S, Iordanskiy S, Saifuddin M, et al.: Human T-lymphotropic virus type 1-infected cells secrete exosomes that contain Tax protein. J Biol Chem. 2014, 289:22284-305.
  • [36]Al-Nedawi K, Meehan B, Micallef J, Lhotak V, May L, Guha A, et al.: Intercellular transfer of the oncogenic receptor EGFRvIII by microvesicles derived from tumour cells. Nat Cell Biol. 2008, 10:619-24.
  • [37]Okoye IS, Coomes SM, Pelly VS, Czieso S, Papayannopoulos V, Tolmachova T, et al.: MicroRNA-containing T-regulatory-cell-derived exosomes suppress pathogenic T helper 1 cells. Immunity. 2014, 41:89-103.
  • [38]Yin W, Ouyang S, Li Y, Xiao B, Yang H: Immature dendritic cell-derived exosomes: a promise subcellular vaccine for autoimmunity. Inflammation. 2013, 36:232-40.
  • [39]Klohn PC, Castro-Seoane R, Collinge J: Exosome release from infected dendritic cells: a clue for a fast spread of prions in the periphery? J Infect. 2013, 67:359-68.
  • [40]Alvarez-Erviti L, Seow Y, Yin H, Betts C, Lakhal S, Wood MJ: Delivery of siRNA to the mouse brain by systemic injection of targeted exosomes. Nat Biotechnol. 2011, 29:341-5.
  • [41]Morelli AE, Larregina AT, Shufesky WJ, Sullivan ML, Stolz DB, Papworth GD, et al.: Endocytosis, intracellular sorting, and processing of exosomes by dendritic cells. Blood. 2004, 104:3257-66.
  • [42]Escrevente C, Keller S, Altevogt P, Costa J: Interaction and uptake of exosomes by ovarian cancer cells. BMC Cancer. 2011, 11:108. BioMed Central Full Text
  • [43]Thery C, Ostrowski M, Segura E: Membrane vesicles as conveyors of immune responses. Nat Rev Immunol. 2009, 9:581-93.
  • [44]Cocucci E, Racchetti G, Meldolesi J: Shedding microvesicles: artefacts no more. Trends Cell Biol. 2009, 19:43-51.
  • [45]Fichtlscherer S, De Rosa S, Fox H, Schwietz T, Fischer A, Liebetrau C, et al.: Circulating microRNAs in patients with coronary artery disease. Circ Res. 2010, 107:677-84.
  • [46]Cantaluppi V, Gatti S, Medica D, Figliolini F, Bruno S, Deregibus MC, et al.: Microvesicles derived from endothelial progenitor cells protect the kidney from ischemia-reperfusion injury by microRNA-dependent reprogramming of resident renal cells. Kidney Int. 2012, 82:412-27.
  • [47]van Solingen C, de Boer HC, Bijkerk R, Monge M, van Oeveren-Rietdijk AM, Seghers L, et al.: MicroRNA-126 modulates endothelial SDF-1 expression and mobilization of Sca-1(+)/Lin(−) progenitor cells in ischaemia. Cardiovasc Res. 2011, 92:449-55.
  • [48]Ranghino A, Cantaluppi V, Grange C, Vitillo L, Fop F, Biancone L, et al.: Endothelial progenitor cell-derived microvesicles improve neovascularization in a murine model of hindlimb ischemia. Int J Immunopathol Pharmacol. 2012, 25:75-85.
  • [49]Lai RC, Arslan F, Lee MM, Sze NS, Choo A, Chen TS, et al.: Exosome secreted by MSC reduces myocardial ischemia/reperfusion injury. Stem Cell Res. 2010, 4:214-22.
  • [50]Sun Q, Chen X, Yu J, Zen K, Zhang CY, Li L: Immune modulatory function of abundant immune-related microRNAs in microvesicles from bovine colostrum. Protein & cell. 2013, 4:197-210.
  • [51]Wang G, Tam LS, Li EK, Kwan BC, Chow KM, Luk CC, et al.: Serum and urinary cell-free MiR-146a and MiR-155 in patients with systemic lupus erythematosus. J Rheumatol. 2010, 37:2516-22.
  • [52]Carlsen AL, Schetter AJ, Nielsen CT, Lood C, Knudsen S, Voss A, et al.: Circulating microRNA expression profiles associated with systemic lupus erythematosus. Arthritis Rheum. 2013, 65:1324-34.
  • [53]Wang H, Peng W, Ouyang X, Li W, Dai Y: Circulating microRNAs as candidate biomarkers in patients with systemic lupus erythematosus. Trans Res. 2012, 160:198-206.
  • [54]Ma L, Young J, Prabhala H, Pan E, Mestdagh P, Muth D, et al.: miR-9, a MYC/MYCN-activated microRNA, regulates E-cadherin and cancer metastasis. Nat Cell Biol 2010, 12:247-56.
  • [55]Zhuang G, Wu X, Jiang Z, Kasman I, Yao J, Guan Y, et al.: Tumour-secreted miR-9 promotes endothelial cell migration and angiogenesis by activating the JAK-STAT pathway. EMBO J. 2012, 31:3513-23.
  • [56]Zhu S, Wu H, Wu F, Nie D, Sheng S, Mo YY: MicroRNA-21 targets tumor suppressor genes in invasion and metastasis. Cell Res. 2008, 18:350-9.
  • [57]Kosaka N, Iguchi H, Ochiya T: Circulating microRNA in body fluid: a new potential biomarker for cancer diagnosis and prognosis. Cancer Sci. 2010, 101:2087-92.
  • [58]Gallach S, Calabuig-Farinas S, Jantus-Lewintre E, Camps C: MicroRNAs: promising new antiangiogenic targets in cancer. BioMed Res Int. 2014, 2014:878450.
  • [59]Yang M, Chen J, Su F, Yu B, Su F, Lin L, et al.: Microvesicles secreted by macrophages shuttle invasion-potentiating microRNAs into breast cancer cells. Mol Cancer. 2011, 10:117. BioMed Central Full Text
  • [60]Lima LG, Chammas R, Monteiro RQ, Moreira ME, Barcinski MA: Tumor-derived microvesicles modulate the establishment of metastatic melanoma in a phosphatidylserine-dependent manner. Cancer Lett. 2009, 283:168-75.
  • [61]Wysoczynski M, Ratajczak MZ: Lung cancer secreted microvesicles: underappreciated modulators of microenvironment in expanding tumors. Int J Cancer. 2009, 125:1595-603.
  • [62]Lehmann BD, Paine MS, Brooks AM, McCubrey JA, Renegar RH, Wang R, et al.: Senescence-associated exosome release from human prostate cancer cells. Cancer Res. 2008, 68:7864-71.
  • [63]Hessvik NP, Phuyal S, Brech A, Sandvig K, Llorente A: Profiling of microRNAs in exosomes released from PC-3 prostate cancer cells. Biochim Biophys Acta. 2012, 1819:1154-63.
  • [64]Duijvesz D, Luider T, Bangma CH, Jenster G: Exosomes as biomarker treasure chests for prostate cancer. Eur Urol. 2011, 59:823-31.
  • [65]Bryant RJ, Pawlowski T, Catto JW, Marsden G, Vessella RL, Rhees B, et al.: Changes in circulating microRNA levels associated with prostate cancer. Br J Cancer. 2012, 106:768-74.
  • [66]Santiago-Dieppa DR, Steinberg J, Gonda D, Cheung VJ, Carter BS, Chen CC: Extracellular vesicles as a platform for ‘liquid biopsy’ in glioblastoma patients. Expert Rev Mol Diagn. 2014, 14:819-25.
  • [67]Alegre E, Sanmamed MF, Rodriguez C, Carranza O, Martin-Algarra S, Gonzalez A: Study of circulating microRNA-125b levels in serum exosomes in advanced melanoma. Arch Pathol Lab Med. 2014, 138:828-32.
  • [68]Kogure T, Lin WL, Yan IK, Braconi C, Patel T: Intercellular nanovesicle-mediated microRNA transfer: a mechanism of environmental modulation of hepatocellular cancer cell growth. Hepatology. 2011, 54:1237-48.
  • [69]Wang W, Li H, Zhou Y, Jie S: Peripheral blood microvesicles are potential biomarkers for hepatocellular carcinoma. Cancer Biomarkers. 2013, 13:351-7.
  • [70]Baran J, Baj-Krzyworzeka M, Weglarczyk K, Szatanek R, Zembala M, Barbasz J, et al.: Circulating tumour-derived microvesicles in plasma of gastric cancer patients. Cancer Immunol, Immunother. 2010, 59:841-50.
  • [71]Taylor DD, Gercel-Taylor C: MicroRNA signatures of tumor-derived exosomes as diagnostic biomarkers of ovarian cancer. Gynecol Oncol. 2008, 110:13-21.
  • [72]Giusti I, D’Ascenzo S, Dolo V: Microvesicles as potential ovarian cancer biomarkers. BioMed Res Int. 2013, 2013:703048.
  • [73]Corcoran C, Friel AM, Duffy MJ, Crown J, O’Driscoll L: Intracellular and extracellular microRNAs in breast cancer. Clin Chem. 2011, 57:18-32.
  • [74]Rabinowits G, Gercel-Taylor C, Day JM, Taylor DD, Kloecker GH: Exosomal microRNA: a diagnostic marker for lung cancer. Clin Lung Cancer. 2009, 10:42-6.
  • [75]Rosell R, Wei J, Taron M: Circulating microRNA signatures of tumor-derived exosomes for early diagnosis of non-small-cell lung cancer. Clin Lung Cancer. 2009, 10:8-9.
  • [76]Miller IV, Raposo G, Welsch U, da Prazeres CO, Thiel U, Lebar M, et al.: First identification of Ewing’s sarcoma-derived extracellular vesicles and exploration of their biological and potential diagnostic implications. Biol Cell. 2013, 105:289-303.
  • [77]Yamada T, Shigemura H, Ishiguro N, Inoshima Y: Cell Infectivity in relation to bovine leukemia virus gp51 and p24 in bovine milk exosomes. PLoS ONE. 2013, 8:e77359.
  • [78]Zhu X, You Y, Li Q, Zeng C, Fu F, Guo A, et al.: BCR-ABL1-positive microvesicles transform normal hematopoietic transplants through genomic instability: implications for donor cell leukemia. Leukemia. 2014, 28:1666-75.
  • [79]Zheng F, Li J, Du W, Wang N, Li H, Huang S: Human ether-a-go-go-related gene K+ channels regulate shedding of leukemia cell-derived microvesicles. Leukemia & Lymphoma. 2012, 53:1592-8.
  • [80]Domnikova NP, Dolgikh TY, Sholenberg EV, Vorontsova EV, Goreva OB, Mel’nikova EV, et al.: Blood microvesicles during chronic lymphoproliferative diseases. Bull Exp Biol Med. 2013, 156:94-7.
  • [81]Szczepanski MJ, Szajnik M, Welsh A, Whiteside TL, Boyiadzis M: Blast-derived microvesicles in sera from patients with acute myeloid leukemia suppress natural killer cell function via membrane-associated transforming growth factor-beta1. Haematologica. 2011, 96:1302-9.
  • [82]Hedlund M, Nagaeva O, Kargl D, Baranov V, Mincheva-Nilsson L: Thermal- and oxidative stress causes enhanced release of NKG2D ligand-bearing immunosuppressive exosomes in leukemia/lymphoma T and B cells. PLoS ONE. 2011, 6:e16899.
  • [83]Ratajczak MZ, Kucia M, Jadczyk T, Greco NJ, Wojakowski W, Tendera M, et al.: Pivotal role of paracrine effects in stem cell therapies in regenerative medicine: can we translate stem cell-secreted paracrine factors and microvesicles into better therapeutic strategies? Leukemia. 2012, 26:1166-73.
  • [84]Di Noto G, Paolini L, Zendrini A, Radeghieri A, Caimi L, Ricotta D: C-src enriched serum microvesicles are generated in malignant plasma cell dyscrasia. PLoS ONE. 2013, 8:e70811.
  • [85]Mineo M, Garfield SH, Taverna S, Flugy A, De Leo G, Alessandro R, et al.: Exosomes released by K562 chronic myeloid leukemia cells promote angiogenesis in a Src-dependent fashion. Angiogenesis. 2012, 15:33-45.
  • [86]Liu Y, Zhu XJ, Zeng C, Wu PH, Wang HX, Chen ZC, et al.: Microvesicles secreted from human multiple myeloma cells promote angiogenesis. Acta Pharmacol Sin. 2014, 35:230-8.
  • [87]Arendt BK, Walters DK, Wu X, Tschumper RC, Jelinek DF: Multiple myeloma dell-derived microvesicles are enriched in CD147 expression and enhance tumor cell proliferation. Oncotarget. 2014, 5:5686-99.
  • [88]Sun L, Wang HX, Zhu XJ, Wu PH, Chen WQ, Zou P, et al.: Serum deprivation elevates the levels of microvesicles with different size distributions and selectively enriched proteins in human myeloma cells in vitro. Acta Pharmacol Sin. 2014, 35:381-93.
  • [89]Ohshima K, Inoue K, Fujiwara A, Hatakeyama K, Kanto K, Watanabe Y, et al.: Let-7 microRNA family is selectively secreted into the extracellular environment via exosomes in a metastatic gastric cancer cell line. PLoS ONE. 2010, 5:e13247.
  • [90]Umezu T, Ohyashiki K, Kuroda M, Ohyashiki JH: Leukemia cell to endothelial cell communication via exosomal miRNAs. Oncogene. 2013, 32:2747-55.
  • [91]Tadokoro H, Umezu T, Ohyashiki K, Hirano T, Ohyashiki JH: Exosomes derived from hypoxic leukemia cells enhance tube formation in endothelial cells. J Biol Chem. 2013, 288:34343-51.
  • [92]Roccaro AM, Sacco A, Maiso P, Azab AK, Tai YT, Reagan M, et al.: BM mesenchymal stromal cell-derived exosomes facilitate multiple myeloma progression. J Clin Invest. 2013, 123:1542-55.
  • [93]Wang J, Hendrix A, Hernot S, Lemaire M, De Bruyne E, Van Valckenborgh E, et al.: Bone marrow stromal cell-derived exosomes as communicators in drug resistance in multiple myeloma cells. Blood. 2014, 124:555-66.
  • [94]Luga V, Wrana JL: Tumor-stroma interaction: revealing fibroblast-secreted exosomes as potent regulators of Wnt-planar cell polarity signaling in cancer metastasis. Cancer Res. 2013, 73:6843-7.
  • [95]Zitvogel L, Regnault A, Lozier A, Wolfers J, Flament C, Tenza D, et al.: Eradication of established murine tumors using a novel cell-free vaccine: dendritic cell-derived exosomes. Nat Med. 1998, 4:594-600.
  • [96]Gastpar R, Gehrmann M, Bausero MA, Asea A, Gross C, Schroeder JA, et al.: Heat shock protein 70 surface-positive tumor exosomes stimulate migratory and cytolytic activity of natural killer cells. Cancer Res. 2005, 65:5238-47.
  文献评价指标  
  下载次数:9次 浏览次数:18次