Epigenetics & Chromatin | |
Role of Ccr4-Not complex in heterochromatin formation at meiotic genes and subtelomeres in fission yeast | |
Juan Mata2  Jürg Bähler3  Masayuki Yamamoto1  Akira Yamashita1  Ayesha Hasan2  Caia Duncan2  María Rodríguez-López3  Cristina Cotobal2  | |
[1] Laboratory of Cell Responses, National Institute for Basic Biology, Okazaki, Japan;Department of Biochemistry, University of Cambridge, Cambridge, UK;Department of Genetics, Evolution and Environment, UCL Cancer Institute, University College London, London, UK | |
关键词: S. pombe; Heterochromatin; ChIP-seq; RIP-chip; Genome-wide approaches; Ccr4-Not complex; | |
Others : 1223303 DOI : 10.1186/s13072-015-0018-4 |
|
received in 2015-07-06, accepted in 2015-07-22, 发布年份 2015 | |
【 摘 要 】
Background
Heterochromatin is essential for chromosome segregation, gene silencing and genome integrity. The fission yeast Schizosaccharomyces pombe contains heterochromatin at centromeres, subtelomeres, and mating type genes, as well as at small islands of meiotic genes dispersed across the genome. This heterochromatin is generated by partially redundant mechanisms, including the production of small interfering RNAs (siRNAs) that are incorporated into the RITS protein complex (RNAi-Induced Transcriptional Silencing). The assembly of heterochromatin islands requires the function of the RNA-binding protein Mmi1, which recruits RITS to its mRNA targets and to heterochromatin islands. In addition, Mmi1 directs its targets to an exosome-dependent RNA elimination pathway.
Results
Ccr4-Not is a conserved multiprotein complex that regulates gene expression at multiple levels, including RNA degradation and translation. We show here that Ccr4-Not is recruited by Mmi1 to its RNA targets. Surprisingly, Ccr4 and Caf1 (the mRNA deadenylase catalytic subunits of the Ccr4-Not complex) are not necessary for the degradation or translation of Mmi1 RNA targets, but are essential for heterochromatin integrity at Mmi1-dependent islands and, independently of Mmi1, at subtelomeric regions. Both roles require the deadenylase activity of Ccr4 and the Mot2/Not4 protein, a ubiquitin ligase that is also part of the complex. Genetic evidence shows that Ccr4-mediated silencing is essential for normal cell growth, indicating that this novel regulation is physiologically relevant. Moreover, Ccr4 interacts with components of the RITS complex in a Mmi1-independent manner.
Conclusions
Taken together, our results demonstrate that the Ccr4-Not complex is required for heterochromatin integrity in both Mmi1-dependent and Mmi1-independent pathways.
【 授权许可】
2015 Cotobal et al.
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
20150902030257772.pdf | 2391KB | download | |
Fig.6. | 45KB | Image | download |
Fig.5. | 112KB | Image | download |
Fig.4. | 112KB | Image | download |
Fig.3. | 73KB | Image | download |
Fig.2. | 44KB | Image | download |
Fig.1. | 44KB | Image | download |
【 图 表 】
Fig.1.
Fig.2.
Fig.3.
Fig.4.
Fig.5.
Fig.6.
【 参考文献 】
- [1]Collart MA, Panasenko OO. The Ccr4-Not complex. Gene. 2012; 492:42-53.
- [2]Azzouz N, Panasenko OO, Colau G, Collart MA. The CCR4-NOT complex physically and functionally interacts with TRAMP and the nuclear exosome. PLoS One. 2009; 4:e6760.
- [3]Bhandari D, Raisch T, Weichenrieder O, Jonas S, Izaurralde E. Structural basis for the Nanos-mediated recruitment of the CCR4-NOT complex and translational repression. Genes Dev. 2014; 28:888-901.
- [4]Cooke A, Prigge A, Wickens M. Translational repression by deadenylases. J Biol Chem. 2010; 285:28506-28513.
- [5]Benson JD, Benson M, Howley PM, Struhl K. Association of distinct yeast Not2 functional domains with components of Gcn5 histone acetylase and Ccr4 transcriptional regulatory complexes. EMBO J. 1998; 17:6714-6722.
- [6]Kruk JA, Dutta A, Fu J, Gilmour DS, Reese JC. The multifunctional Ccr4-Not complex directly promotes transcription elongation. Genes Dev. 2011; 25:581-593.
- [7]Halter D, Collart MA, Panasenko OO. The Not4 E3 ligase and CCR4 deadenylase play distinct roles in protein quality control. PLoS One. 2014; 9:e86218.
- [8]Chicoine J, Benoit P, Gamberi C, Paliouras M, Simonelig M, Lasko P. Bicaudal-C recruits CCR4-NOT deadenylase to target mRNAs and regulates oogenesis, cytoskeletal organization, and its own expression. Dev Cell. 2007; 13:691-704.
- [9]Goldstrohm AC, Seay DJ, Hook BA, Wickens M. PUF protein-mediated deadenylation is catalyzed by Ccr4p. J Biol Chem. 2007; 282:109-114.
- [10]Sandler H, Kreth J, Timmers HT, Stoecklin G. Not1 mediates recruitment of the deadenylase Caf1 to mRNAs targeted for degradation by tristetraprolin. Nucleic Acids Res. 2011; 39:4373-4386.
- [11]Semotok JL, Cooperstock RL, Pinder BD, Vari HK, Lipshitz HD, Smibert CA. Smaug recruits the CCR4/POP2/NOT deadenylase complex to trigger maternal transcript localization in the early Drosophila embryo. Curr Biol. 2005; 15:284-294.
- [12]Chen Y, Boland A, Kuzuoglu-Ozturk D, Bawankar P, Loh B, Chang CT et al.. A DDX6-CNOT1 complex and W-binding pockets in CNOT9 reveal direct links between miRNA target recognition and silencing. Mol Cell. 2014; 54:737-750.
- [13]Mathys H, Basquin J, Ozgur S, Czarnocki-Cieciura M, Bonneau F, Aartse A et al.. Structural and biochemical insights to the role of the CCR4-NOT complex and DDX6 ATPase in microRNA repression. Mol Cell. 2014; 54:751-765.
- [14]Rouya C, Siddiqui N, Morita M, Duchaine TF, Fabian MR, Sonenberg N. Human DDX6 effects miRNA-mediated gene silencing via direct binding to CNOT1. RNA. 2014; 20:1398-1409.
- [15]Bühler M, Gasser SM. Silent chromatin at the middle and ends: lessons from yeasts. EMBO J. 2009; 28:2149-2161.
- [16]Reyes-Turcu FE, Grewal SI. Different means, same end-heterochromatin formation by RNAi and RNAi-independent RNA processing factors in fission yeast. Curr Opin Genet Dev. 2012; 22:156-163.
- [17]Cam HP, Sugiyama T, Chen ES, Chen X, FitzGerald PC, Grewal SI. Comprehensive analysis of heterochromatin- and RNAi-mediated epigenetic control of the fission yeast genome. Nat Genet. 2005; 37:809-819.
- [18]Yamanaka S, Mehta S, Reyes-Turcu FE, Zhuang F, Fuchs RT, Rong Y et al.. RNAi triggered by specialized machinery silences developmental genes and retrotransposons. Nature. 2013; 493:557-560.
- [19]Audergon PN, Catania S, Kagansky A, Tong P, Shukla M, Pidoux AL et al.. Epigenetics. Restricted epigenetic inheritance of H3K9 methylation. Science. 2015; 348:132-135.
- [20]Ayoub N, Noma K, Isaac S, Kahan T, Grewal SI, Cohen A. A novel jmjC domain protein modulates heterochromatization in fission yeast. Molecular Cell Biology. 2003; 23:4356-4370.
- [21]Braun S, Garcia JF, Rowley M, Rougemaille M, Shankar S, Madhani HD. The Cul4-Ddb1(Cdt)(2) ubiquitin ligase inhibits invasion of a boundary-associated antisilencing factor into heterochromatin. Cell. 2011; 144:41-54.
- [22]Ragunathan K, Jih G, Moazed D. Epigenetics. Epigenetic inheritance uncoupled from sequence-specific recruitment. Science. 2015; 348:1258699.
- [23]Zofall M, Grewal SI. Swi6/HP1 recruits a JmjC domain protein to facilitate transcription of heterochromatic repeats. Mol Cell. 2006; 22:681-692.
- [24]Yamamoto M, Imai I, Watanabe YS. pombe mating and sporulation. In: The Molecular and cellular biology of the yeast saccharomyces: life cycle and cell biology. Pringle JR, Broach JR, Jones EW, editors. Cold Spring Harbor Laboratory, Cold Spring Harbor; 1997: p.1035-1106.
- [25]Mata J, Lyne R, Burns G, Bähler J. The transcriptional program of meiosis and sporulation in fission yeast. Nat Genet. 2002; 32:143-147.
- [26]Amorim MJ, Cotobal C, Duncan C, Mata J. Global coordination of transcriptional control and mRNA decay during cellular differentiation. Mol Syst Biol. 2010; 6:380.
- [27]Harigaya Y, Tanaka H, Yamanaka S, Tanaka K, Watanabe Y, Tsutsumi C et al.. Selective elimination of messenger RNA prevents an incidence of untimely meiosis. Nature. 2006; 442:45-50.
- [28]Horie S, Watanabe Y, Tanaka K, Nishiwaki S, Fujioka H, Abe H et al.. The Schizosaccharomyces pombe mei4 + gene encodes a meiosis-specific transcription factor containing a forkhead DNA-binding domain. Mol Cell Biol. 1998; 18:2118-2129.
- [29]Mata J, Bähler J. Global roles of Ste11p, cell type, and pheromone in the control of gene expression during early sexual differentiation in fission yeast. Proc Natl Acad Sci USA. 2006; 103:15517-15522.
- [30]Mata J, Wilbrey A, Bähler J. Transcriptional regulatory network for sexual differentiation in fission yeast. Genome Biol. 2007; 8:R217. BioMed Central Full Text
- [31]McPheeters DS, Cremona N, Sunder S, Chen HM, Averbeck N, Leatherwood J et al.. A complex gene regulatory mechanism that operates at the nexus of multiple RNA processing decisions. Nat Struct Mol Biol. 2009; 16:255-264.
- [32]Sugimoto A, Iino Y, Maeda T, Watanabe Y, Yamamoto M. Schizosaccharomyces pombe ste11+ encodes a transcription factor with an HMG motif that is a critical regulator of sexual development. Genes Dev. 1991; 5:1990-1999.
- [33]Yamanaka S, Yamashita A, Harigaya Y, Iwata R, Yamamoto M. Importance of polyadenylation in the selective elimination of meiotic mRNAs in growing S. pombe cells. EMBO J. 2010; 29:2173-2181.
- [34]Hasan A, Cotobal C, Duncan CD, Mata J. Systematic Analysis of the role of RNA-binding proteins in the regulation of RNA stability. PLoS Genet. 2014; 10:e1004684.
- [35]St-André O, Lemieux C, Perreault A, Lackner DH, Bähler J, Bachand F. Negative regulation of meiotic gene expression by the nuclear poly(a)-binding protein in fission yeast. J Biol Chem. 2010; 285:27859-27868.
- [36]Sugiyama T, Sugioka-Sugiyama R. Red1 promotes the elimination of meiosis-specific mRNAs in vegetatively growing fission yeast. EMBO J. 2011; 30:1027-1039.
- [37]Hiriart E, Vavasseur A, Touat-Todeschini L, Yamashita A, Gilquin B, Lambert E et al.. Mmi1 RNA surveillance machinery directs RNAi complex RITS to specific meiotic genes in fission yeast. EMBO J. 2012; 31:2296-2308.
- [38]Zofall M, Yamanaka S, Reyes-Turcu FE, Zhang K, Rubin C, Grewal SI. RNA elimination machinery targeting meiotic mRNAs promotes facultative heterochromatin formation. Science. 2012; 335:96-100.
- [39]Tashiro S, Asano T, Kanoh J, Ishikawa F. Transcription-induced chromatin association of RNA surveillance factors mediates facultative heterochromatin formation in fission yeast. Genes Cells. 2013; 18:327-339.
- [40]Shimoda C, Uehira M, Kishida M, Fujioka H, Iino Y, Watanabe Y et al.. Cloning and analysis of transcription of the mei2 gene responsible for initiation of meiosis in the fission yeast Schizosaccharomyces pombe. J Bacteriol. 1987; 169:93-96.
- [41]Duncan CD, Mata J. The translational landscape of fission-yeast meiosis and sporulation. Nat Struct Mol Biol. 2014; 21:641-647.
- [42]Yamashita A, Shichino Y, Tanaka H, Hiriart E, Touat-Todeschini L, Vavasseur A et al.. Hexanucleotide motifs mediate recruitment of the RNA elimination machinery to silent meiotic genes. Open Biol. 2012; 2:120014.
- [43]Doidge R, Mittal S, Aslam A, Winkler GS. Deadenylation of cytoplasmic mRNA by the mammalian Ccr4-Not complex. Biochem Soc Trans. 2012; 40:896-901.
- [44]Duncan CD, Mata J. Cotranslational protein-RNA associations predict protein-protein interactions. BMC Genom. 2014; 15:298. BioMed Central Full Text
- [45]Duncan CD, Mata J. Widespread cotranslational formation of protein complexes. PLoS Genet. 2011; 7:e1002398.
- [46]Perreault A, Lemieux C, Bachand F. Regulation of the nuclear poly(A)-binding protein by arginine methylation in fission yeast. J Biol Chem. 2007; 282:7552-7562.
- [47]Briggs MW, Burkard KT, Butler JS. Rrp6p, the yeast homologue of the human PM-Scl 100-kDa autoantigen, is essential for efficient 5.8 S rRNA 3′ end formation. J Biol Chem. 1998; 273:13255-13263.
- [48]Sun M, Schwalb B, Schulz D, Pirkl N, Etzold S, Lariviere L et al.. Comparative dynamic transcriptome analysis (cDTA) reveals mutual feedback between mRNA synthesis and degradation. Genome Res. 2012; 22:1350-1359.
- [49]Kanoh J, Sadaie M, Urano T, Ishikawa F. Telomere binding protein Taz1 establishes Swi6 heterochromatin independently of RNAi at telomeres. Curr Biol. 2005; 15:1808-1819.
- [50]Chen J, Chiang YC, Denis CL. CCR4, a 3′–5′ poly(A) RNA and ssDNA exonuclease, is the catalytic component of the cytoplasmic deadenylase. EMBO J. 2002; 21:1414-1426.
- [51]Hansen KR, Ibarra PT, Thon G. Evolutionary-conserved telomere-linked helicase genes of fission yeast are repressed by silencing factors, RNAi components and the telomere-binding protein Taz1. Nucleic Acids Res. 2006; 34:78-88.
- [52]Hall IM, Shankaranarayana GD, Noma K, Ayoub N, Cohen A, Grewal SI. Establishment and maintenance of a heterochromatin domain. Science. 2002; 297:2232-2237.
- [53]Tucker M, Staples RR, Valencia-Sanchez MA, Muhlrad D, Parker R. Ccr4p is the catalytic subunit of a Ccr4p/Pop2p/Notp mRNA deadenylase complex in Saccharomyces cerevisiae. EMBO J. 2002; 21:1427-1436.
- [54]Panasenko OO. The role of the E3 ligase Not4 in cotranslational quality control. Front Genet. 2014; 5:141.
- [55]Panasenko OO, Collart MA. Presence of Not5 and ubiquitinated Rps7A in polysome fractions depends upon the Not4 E3 ligase. Mol Microbiol. 2012; 83:640-653.
- [56]Mersman DP, Du HN, Fingerman IM, South PF, Briggs SD. Polyubiquitination of the demethylase Jhd2 controls histone methylation and gene expression. Genes Dev. 2009; 23:951-962.
- [57]Elmore ZC, Beckley JR, Chen JS, Gould KL. Histone H2B ubiquitination promotes the function of the anaphase-promoting complex/cyclosome in Schizosaccharomyces pombe. G3 Bethesda. 2014; 4:1529-1538.
- [58]Sadeghi L, Siggens L, Svensson JP, Ekwall K. Centromeric histone H2B monoubiquitination promotes noncoding transcription and chromatin integrity. Nat Struct Mol Biol. 2014; 21:236-243.
- [59]Kang HJ, Jeong SJ, Kim KN, Baek IJ, Chang M, Kang CM et al.. A novel protein, Pho92, has a conserved YTH domain and regulates phosphate metabolism by decreasing the mRNA stability of PHO4 in Saccharomyces cerevisiae. Biochem J. 2014; 457:391-400.
- [60]Forsburg SL, Rhind N. Basic methods for fission yeast. Yeast. 2006; 23:173-183.
- [61]Tasto JJ, Carnahan RH, McDonald WH, Gould KL. Vectors and gene targeting modules for tandem affinity purification in Schizosaccharomyces pombe. Yeast. 2001; 18:657-662.
- [62]Werler PJ, Hartsuiker E, Carr AM. A simple Cre-loxP method for chromosomal N-terminal tagging of essential and non-essential Schizosaccharomyces pombe genes. Gene. 2003; 304:133-141.
- [63]Bähler J, Wu JQ, Longtine MS, Shah NG, McKenzie A, Steever AB et al.. Heterologous modules for efficient and versatile PCR-based gene targeting in Schizosaccharomyces pombe. Yeast. 1998; 14:943-951.
- [64]Mudge DK, Hoffman CA, Lubinski TJ, Hoffman CS. Use of a ura5+-lys7+ cassette to construct unmarked gene knock-ins in Schizosaccharomyces pombe. Curr Genet. 2012; 58:59-64.
- [65]Lyne R, Burns G, Mata J, Penkett CJ, Rustici G, Chen D et al.. Whole-genome microarrays of fission yeast: characteristics, accuracy, reproducibility, and processing of array data. BMC Genom. 2003; 4:27. BioMed Central Full Text
- [66]Tusher VG, Tibshirani R, Chu G. Significance analysis of microarrays applied to the ionizing radiation response. Proc Natl Acad Sci USA. 2001; 98:5116-5121.
- [67]Wood V, Harris MA, McDowall MD, Rutherford K, Vaughan BW, Staines DM et al.. PomBase: a comprehensive online resource for fission yeast. Nucleic Acids Res. 2012; 40:D695-D699.
- [68]Langmead B, Trapnell C, Pop M, Salzberg SL. Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol. 2009; 10:R25. BioMed Central Full Text
- [69]Thorvaldsdottir H, Robinson JT, Mesirov JP. Integrative Genomics Viewer (IGV): high-performance genomics data visualization and exploration. Brief Bioinform. 2013; 14:178-192.