Journal of Ovarian Research | |
Application of RNA-Seq transcriptome analysis: CD151 is an Invasion/Migration target in all stages of epithelial ovarian cancer | |
John A Martignetti4  Peter Dottino3  Ravi Sachidanandam4  Maurizio D'Incalci2  Sergio Marchini1  Robert Fruscio5  Samantha Cohen3  Peter Schlosshauer6  Fei Huang4  Hardik Shah4  Emir Senturk4  Li Lin4  Rebecca A Mosig4  | |
[1] Department of Oncology, Instituto "Mario Negri", Milano, Italy;Mario Negri Gynecological Oncology Group (MaNGO), Milano, Italy;Division of Gynecologic Oncology, Mount Sinai School of Medicine, New York, NY, USA;Department of Genetics and Genomic Sciences, Mount Sinai School of Medicine, New York, NY, USA;San Gerardo Hospital, University of Milano-Bicocca, Monza, Italy;Department of Pathology, Mount Sinai School of Medicine, New York, NY, USA | |
关键词: RNA-Seq; Metastasis; Migration; Invasion; Epithelial Ovarian Cancer; CD151; | |
Others : 815192 DOI : 10.1186/1757-2215-5-4 |
|
received in 2011-11-21, accepted in 2012-01-24, 发布年份 2012 | |
【 摘 要 】
Background
RNA-Seq allows a theoretically unbiased analysis of both genome-wide transcription levels and mutation status of a tumor. Using this technique we sought to identify novel candidate therapeutic targets expressed in epithelial ovarian cancer (EOC).
Methods
Specifically, we sought candidate invasion/migration targets based on expression levels across all tumors, novelty of expression in EOC, and known function. RNA-Seq analysis revealed the high expression of CD151, a transmembrane protein, across all stages of EOC. Expression was confirmed at both the mRNA and protein levels using RT-PCR and immunohistochemical staining, respectively.
Results
In both EOC tumors and normal ovarian surface epithelial cells we demonstrated CD151 to be localized to the membrane and cell-cell junctions in patient-derived and established EOC cell lines. We next evaluated its role in EOC dissemination using two ovarian cancer-derived cell lines with differential levels of CD151 expression. Targeted antibody-mediated and siRNA inhibition or loss of CD151 in SKOV3 and OVCAR5 cell lines effectively inhibited their migration and invasion.
Conclusion
Taken together, these findings provide the first proof-of-principle demonstration for a next generation sequencing approach to identifying candidate therapeutic targets and reveal CD151 to play a role in EOC dissemination.
【 授权许可】
2012 Mosig et al; licensee BioMed Central Ltd.
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
20140710060456931.pdf | 4001KB | download | |
Figure 4. | 43KB | Image | download |
Figure 3. | 42KB | Image | download |
Figure 2. | 29KB | Image | download |
Figure 1. | 130KB | Image | download |
【 图 表 】
Figure 1.
Figure 2.
Figure 3.
Figure 4.
【 参考文献 】
- [1]Altekruse SF, Kosary CL, Krapcho M, Neyman N, Aminou R, Waldron W, Ruhl J, Howlader N, Tatalovich Z, Cho H, Mariotto A, Eisner MP, Lewis DR, Cronin K, Chen HS, Feuer EJ, Stinchcomb DG, Edwards BK: SEER Cancer Statistics Review, 1975-2007 [Internet]. Bethesda, MD: National Cancer Institute;
- [2]Cannistra SA: Cancer of the ovary. N Engl J Med 2004, 351:2519-29.
- [3]Guarneri V, Piacentini F, Barbieri E, Conte PF: Achievements and unmet needs in the management of advanced ovarian cancer. Gynecol Oncol 2010, 117:152-8.
- [4]Pleasance ED, Stephens PJ, O'Meara S, McBride DJ, Meynert A, Jones D, Lin ML, Beare D, Lau KW, Greenman C, Varela I, Nik-Zainal S, Davies HR, Ordonez GR, Mudie LJ, Latimer C, Edkins S, Stebbings L, Chen L, Jia M, Leroy C, Marshall J, Menzies A, Butler A, Teague JW, Mangion J, Sun YA, McLaughlin SF, Peckham HE, Tsung EF, Costa GL, Lee CC, Minna JD, Gazdar A, Birney E, Rhodes MD, McKernan KJ, Stratton MR, Futreal PA, Campbell PJ: A small-cell lung cancer genome with complex signatures of tobacco exposure. Nature 2010, 463:184-90.
- [5]Timmermann B, Kerick M, Roehr C, Fischer A, Isau M, Boerno ST, Wunderlich A, Barmeyer C, Seemann P, Koenig J, Lappe M, Kuss AW, Garshasbi M, Bertram L, Trappe K, Werber M, Herrmann BG, Zatloukal K, Lehrach H, Schweiger MR: Somatic mutation profiles of MSI and MSS colorectal cancer identified by whole exome next generation sequencing and bioinformatics analysis. PLoS One 2010, 5:e15661.
- [6]Pleasance ED, Cheetham RK, Stephens PJ, McBride DJ, Humphray SJ, Greenman CD, Varela I, Lin ML, Ordonez GR, Bignell GR, Ye K, Alipaz J, Bauer MJ, Beare D, Butler A, Carter RJ, Chen L, Cox AJ, Edkins S, Kokko-Gonzales PI, Gormley NA, Grocock RJ, Haudenschild CD, Hims MM, James T, Jia M, Kingsbury Z, Leroy C, Marshall J, Menzies A, Mudie LJ, Ning Z, Royce T, Schulz-Trieglaff OB, Spiridou A, Stebbings LA, Szajkowski L, Teague J, Williamson D, Chin L, Ross MT, Campbell PJ, Bentley DR, Futreal PA, Stratton MR: A comprehensive catalogue of somatic mutations from a human cancer genome. Nature 2010, 463:191-6.
- [7]Bignell GR, Greenman CD, Davies H, Butler AP, Edkins S, Andrews JM, Buck G, Chen L, Beare D, Latimer C, Widaa S, Hinton J, Fahey C, Fu B, Swamy S, Dalgliesh GL, Teh BT, Deloukas P, Yang F, Campbell PJ, Futreal PA, Stratton MR: Signatures of mutation and selection in the cancer genome. Nature 2010, 463:893-8.
- [8]Hasegawa M, Furuya M, Kasuya Y, Nishiyama M, Sugiura T, Nikaido T, Momota Y, Ichinose M, Kimura S: CD151 dynamics in carcinoma-stroma interaction: Integrin expression, adhesion strength and proteolytic activity. Lab Invest 2007, 87:882-92.
- [9]Liu L, He B, Liu WM, Zhou D, Cox JV, Zhang XA: Tetraspanin CD151 promotes cell migration by regulating integrin trafficking. J Biol Chem 2007, 282:31631-42.
- [10]Yang XH, Flores LM, Li Q, Zhou P, Xu F, Krop IE, Hemler ME: Disruption of laminin-integrin-CD151-focal adhesion kinase axis sensitizes breast cancer cells to ErbB2 antagonists. Cancer Res 2010, 70:2256-63.
- [11]Zuo H, Liu Z, Liu X, Yang J, Liu T, Wen S, Zhang XA, Cianflone K, Wang D: CD151 gene delivery after myocardial infarction promotes functional neovascularization and activates FAK signaling. Mol Med 2009, 15:307-15.
- [12]Yang XH, Richardson AL, Torres-Arzayus MI, Zhou P, Sharma C, Kazarov AR, Andzelm MM, Strominger JL, Brown M, Hemler ME: CD151 accelerates breast cancer by regulating alpha 6 integrin function, signaling, and molecular organization. Cancer Res 2008, 68:3204-13.
- [13]Sawada S, Yoshimoto M, Odintsova E, Hotchin NA, Berditchevski F: The tetraspanin CD151 functions as a negative regulator in the adhesion-dependent activation of ras. J Biol Chem 2003, 278:26323-6.
- [14]Franco M, Muratori C, Corso S, Tenaglia E, Bertotti A, Capparuccia L, Trusolino L, Comoglio PM, Tamagnone L: The tetraspanin CD151 is required for met-dependent signaling and tumor cell growth. J Biol Chem 2010.
- [15]Zhu GH, Huang C, Qiu ZJ, Liu J, Zhang ZH, Zhao N, Feng ZZ, Lv XH: Expression and prognostic significance of CD151, c-met, and integrin alpha3/alpha6 in pancreatic ductal adenocarcinoma. Dig Dis Sci 2010.
- [16]Johnson JL, Winterwood N, DeMali KA, Stipp CS: Tetraspanin CD151 regulates RhoA activation and the dynamic stability of carcinoma cell-cell contacts. J Cell Sci 2009, 122:2263-73.
- [17]Ke AW, Shi GM, Zhou J, Wu FZ, Ding ZB, Hu MY, Xu Y, Song ZJ, Wang ZJ, Wu JC, Bai DS, Li JC, Liu KD, Fan J: Role of overexpression of CD151 and/or c-met in predicting prognosis of hepatocellular carcinoma. Hepatology 2009, 49:491-503.
- [18]Yamada M, Sumida Y, Fujibayashi A, Fukaguchi K, Sanzen N, Nishiuchi R, Sekiguchi K: The tetraspanin CD151 regulates cell morphology and intracellular signaling on laminin-511. FEBS J 2008, 275:3335-51.
- [19]Zijlstra A, Lewis J, Degryse B, Stuhlmann H, Quigley JP: The inhibition of tumor cell intravasation and subsequent metastasis via regulation of in vivo tumor cell motility by the tetraspanin CD151. Cancer Cell 2008, 13:221-34.
- [20]Marchini S, Mariani P, Chiorino G, Marrazzo E, Bonomi R, Fruscio R, Clivio L, Garbi A, Torri V, Cinquini M, Dell'Anna T, Apolone G, Broggini M, D'Incalci M: Analysis of gene expression in early-stage ovarian cancer. Clin Cancer Res 2008, 14:7850-60.
- [21]Mortazavi A, Williams BA, McCue K, Schaeffer L, Wold B: Mapping and quantifying mammalian transcriptomes by RNA-seq. Nat Methods 2008, 5:621-8.
- [22]Mosig RA, Dowling O, Difeo A, Ramirez MC, Parker IC, Abe E, Diouri J, Aqeel AA, Wylie JD, Oblander SA, Madri J, Bianco P, Apte SS, Zaidi M, Doty SB, Majeska RJ, Schaffler MB, Martignetti JA: Loss of MMP-2 disrupts skeletal and craniofacial development and results in decreased bone mineralization, joint erosion and defects in osteoblast and osteoclast growth. Hum Mol Genet 2007, 16:1113-23.
- [23]Tricarico C, Pinzani P, Bianchi S, Paglierani M, Distante V, Pazzagli M, Bustin SA, Orlando C: Quantitative real-time reverse transcription polymerase chain reaction: Normalization to rRNA or single housekeeping genes is inappropriate for human tissue biopsies. Anal Biochem 2002, 309:293-300.
- [24]Lineberry N, Su L, Soares L, Fathman CG: The single subunit transmembrane E3 ligase gene related to anergy in lymphocytes (GRAIL) captures and then ubiquitinates transmembrane proteins across the cell membrane. J Biol Chem 2008, 283:28497-505.
- [25]Rana S, Claas C, Kretz CC, Zoeller M: Activation-induced internalization differs for the tetraspanins CD9 and Tspan8: Impact on tumor cell motility. Int J Biochem Cell Biol 2010.
- [26]Yang X, Claas C, Kraeft SK, Chen LB, Wang Z, Kreidberg JA, Hemler ME: Palmitoylation of tetraspanin proteins: Modulation of CD151 lateral interactions, subcellular distribution, and integrin-dependent cell morphology. Mol Biol Cell 2002, 13:767-81.
- [27]Klosek SK, Nakashiro K, Hara S, Goda H, Hasegawa H, Hamakawa H: CD151 regulates HGF-stimulated morphogenesis of human breast cancer cells. Biochem Biophys Res Commun 2009, 379:1097-100.
- [28]Chien CW, Lin SC, Lai YY, Lin BW, Lin SC, Lee JC, Tsai SJ: Regulation of CD151 by hypoxia controls cell adhesion and metastasis in colorectal cancer. Clin Cancer Res 2008, 14:8043-51.
- [29]Sauer G, Kurzeder C, Grundmann R, Kreienberg R, Zeillinger R, Deissler H: Expression of tetraspanin adaptor proteins below defined threshold values is associated with in vitro invasiveness of mammary carcinoma cells. Oncol Rep 2003, 10:405-10.
- [30]Sharma C, Yang XH, Hemler ME: DHHC2 affects palmitoylation, stability, and functions of tetraspanins CD9 and CD151. Mol Biol Cell 2008, 19:3415-25.
- [31]Shigeta M, Sanzen N, Ozawa M, Gu J, Hasegawa H, Sekiguchi K: CD151 regulates epithelial cell-cell adhesion through PKC- and Cdc42-dependent actin cytoskeletal reorganization. J Cell Biol 2003, 163:165-76.
- [32]Testa JE, Brooks PC, Lin JM, Quigley JP: Eukaryotic expression cloning with an antimetastatic monoclonal antibody identifies a tetraspanin (PETA-3/CD151) as an effector of human tumor cell migration and metastasis. Cancer Res 1999, 59:3812-20.
- [33]Sadej R, Romanska H, Baldwin G, Gkirtzimanaki K, Novitskaya V, Filer AD, Krcova Z, Kusinska R, Ehrmann J, Buckley CD, Kordek R, Potemski P, Eliopoulos AG, Lalani e, Berditchevski F: CD151 regulates tumorigenesis by modulating the communication between tumor cells and endothelium. Mol Cancer Res 2009, 7:787-98.
- [34]Gesierich S, Paret C, Hildebrand D, Weitz J, Zgraggen K, Schmitz-Winnenthal FH, Horejsi V, Yoshie O, Herlyn D, Ashman LK, Zoller M: Colocalization of the tetraspanins, CO-029 and CD151, with integrins in human pancreatic adenocarcinoma: Impact on cell motility. Clin Cancer Res 2005, 11:2840-52.
- [35]Funakoshi T, Tachibana I, Hoshida Y, Kimura H, Takeda Y, Kijima T, Nishino K, Goto H, Yoneda T, Kumagai T, Osaki T, Hayashi S, Aozasa K, Kawase I: Expression of tetraspanins in human lung cancer cells: Frequent downregulation of CD9 and its contribution to cell motility in small cell lung cancer. Oncogene 2003, 22:674-87.
- [36]Tokuhara T, Hasegawa H, Hattori N, Ishida H, Taki T, Tachibana S, Sasaki S, Miyake M: Clinical significance of CD151 gene expression in non-small cell lung cancer. Clin Cancer Res 2001, 7:4109-14.