期刊论文详细信息
Cardiovascular Diabetology
Glucagon-like peptide-1 protects against ischemic left ventricular dysfunction during hyperglycemia in patients with coronary artery disease and type 2 diabetes mellitus
David P Dutka1  Stephen P Hoole2  Sophie J Clarke2  Anna C Kydd2  Liam S Ring2  Patrick M Heck2  Liam M McCormick2 
[1] Department of Cardiovascular Medicine, ACCI Level 6, Addenbrooke’s Hospital, Hills Rd, Cambridge CB2 0QQ, UK;Department of Cardiovascular Medicine, University of Cambridge, Cambridge, UK
关键词: Stress echocardiography;    Glucagon-like peptide;    Diabetes mellitus;    Coronary disease;    Hyperglycemia;   
Others  :  1223752
DOI  :  10.1186/s12933-015-0259-3
 received in 2015-05-16, accepted in 2015-07-17,  发布年份 2015
PDF
【 摘 要 】

Background

Enhancement of myocardialglucose uptake may reduce fatty acid oxidation and improve tolerance to ischemia. Hyperglycemia, in association with hyperinsulinemia, stimulates this metabolic change but may have deleterious effects on left ventricular (LV) function. The incretin hormone, glucagon-like peptide-1 (GLP-1), also has favorable cardiovascular effects, and has emerged as an alternative method of altering myocardial substrate utilization. In patients with coronary artery disease (CAD), we investigated: (1) the effect of a hyperinsulinemic hyperglycemic clamp (HHC) on myocardial performance during dobutamine stress echocardiography (DSE), and (2) whether an infusion of GLP-1(7-36) at the time of HHC protects against ischemic LV dysfunction during DSE in patients with type 2 diabetes mellitus (T2DM).

Methods

In study 1, twelve patients underwent two DSEs with tissue Doppler imaging (TDI)—one during the steady-state phase of a HHC. In study 2, ten patients with T2DM underwent two DSEs with TDI during the steady-state phase of a HHC. GLP-1(7-36) was infused intravenously at 1.2 pmol/kg/min during one of the scans. In both studies, global LV function was assessed by ejection fraction and mitral annular systolic velocity, and regional wall LV function was assessed using peak systolic velocity, strain and strain rate from 12 paired non-apical segments.

Results

In study 1, the HHC (compared with control) increased glucose (13.0 ± 1.9 versus 4.8 ± 0.5 mmol/l, p < 0.0001) and insulin (1,212 ± 514 versus 114 ± 47 pmol/l, p = 0.01) concentrations, and reduced FFA levels (249 ± 175 versus 1,001 ± 333 μmol/l, p < 0.0001), but had no net effect on either global or regional LV function. In study 2, GLP-1 enhanced both global (ejection fraction, 77.5 ± 5.0 versus 71.3 ± 4.3%, p = 0.004) and regional (peak systolic strain −18.1 ± 6.6 versus −15.5 ± 5.4%, p < 0.0001) myocardial performance at peak stress and at 30 min recovery. These effects were predominantly driven by a reduction in contractile dysfunction in regions subject to demand ischemia.

Conclusions

In patients with CAD, hyperinsulinemic hyperglycemia has a neutral effect on LV function during DSE. However, GLP-1 at the time of hyperglycemia improves myocardial tolerance to demand ischemia in patients with T2DM.

Trial Registration: http://www.isrctn.org. Unique identifier ISRCTN69686930

【 授权许可】

   
2015 McCormick et al.

【 预 览 】
附件列表
Files Size Format View
20150904031447133.pdf 1735KB PDF download
Fig.6. 44KB Image download
Fig.5. 20KB Image download
Fig.4. 30KB Image download
Fig.3. 61KB Image download
Fig.2. 41KB Image download
Fig.1. 32KB Image download
【 图 表 】

Fig.1.

Fig.2.

Fig.3.

Fig.4.

Fig.5.

Fig.6.

【 参考文献 】
  • [1]Capes SE, Hunt D, Malmberg K, Gerstein HC. Stress hyperglycaemia and increased risk of death after myocardial infarction in patients with and without diabetes: a systematic overview. Lancet. 2000; 355:773-778.
  • [2]Deedwania P, Kosiborod M, Barrett E, Ceriello A, Isley W, Mazzone T et al.. Hyperglycemia and acute coronary syndrome: a scientific statement from the American Heart Association Diabetes Committee of the Council on Nutrition, physical activity, and metabolism. Circulation. 2008; 117:1610-1619.
  • [3]Opie LH. Metabolic management of acute myocardial infarction comes to the fore and extends beyond control of hyperglycemia. Circulation. 2008; 117:2172-2177.
  • [4]Finfer S, Chittock DR, Su SY, Blair D, Foster D. Intensive versus conventional glucose control in critically ill patients. N Engl J Med. 2009; 360:1283-1297.
  • [5]Zhao YT, Weng CL, Chen ML, Li KB, Ge YG, Lin XM et al.. Comparison of glucose-insulin-potassium and insulin-glucose as adjunctive therapy in acute myocardial infarction: a contemporary meta-analysis of randomised controlled trials. Heart. 2010; 96:1622-1626.
  • [6]Amsterdam EA, Wenger NK, Brindis RG, Casey DE, Ganiats TG, Holmes DR et al.. 2014 AHA/ACC Guideline for the management of patients with non-st-elevation acute coronary syndromes: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines. J Am Coll Cardiol. 2014; 64:2645-2687.
  • [7]O’Gara PT, Kushner FG, Ascheim DD, Casey DE, Chung MK, de Lemos JA et al.. ACCF/AHA guideline for the management of ST-elevation myocardial infarction: a report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines. Circulation. 2013; 2013(127):e362-e425.
  • [8]Holst JJ. The physiology of glucagon-like peptide 1. Physiol Rev. 2007; 87:1409-1439.
  • [9]Mehta SR, Yusuf S, Diaz R, Zhu J, Pais P, Xavier D et al.. Effect of glucose-insulin-potassium infusion on mortality in patients with acute ST-segment elevation myocardial infarction: the CREATE-ECLA randomized controlled trial. JAMA. 2005; 293:437-446.
  • [10]Nikolaidis LA, Mankad S, Sokos GG, Miske G, Shah A, Elahi D et al.. Effects of glucagon-like peptide-1 in patients with acute myocardial infarction and left ventricular dysfunction after successful reperfusion. Circulation. 2004; 109:962-965.
  • [11]Lonborg J, Vejlstrup N, Kelbaek H, Botker HE, Kim WY, Mathiasen AB et al.. Exenatide reduces reperfusion injury in patients with ST-segment elevation myocardial infarction. Eur Heart J. 2012; 33:1491-1499.
  • [12]Read PA, Hoole SP, White PA, Khan FZ, O’Sullivan M, West NE et al.. A pilot study to assess whether glucagon-like peptide-1 protects the heart from ischemic dysfunction and attenuates stunning after coronary balloon occlusion in humans. Circ Cardiovasc Interv. 2011; 4:266-272.
  • [13]Read PA, Khan FZ, Dutka DP. Cardioprotection against ischaemia induced by dobutamine stress using glucagon-like peptide-1 in patients with coronary artery disease. Heart. 2012; 98:408-413.
  • [14]Read PA, Khan FZ, Heck PM, Hoole SP, Dutka DP. DPP-4 inhibition by sitagliptin improves the myocardial response to dobutamine stress and mitigates stunning in a pilot study of patients with coronary artery disease. Circ Cardiovasc Imaging. 2010; 3:195-201.
  • [15]McCormick LM, Kydd AC, Read PA, Ring LS, Bond SJ, Hoole SP et al.. Chronic dipeptidyl peptidase-4 inhibition with sitagliptin is associated with sustained protection against ischemic left ventricular dysfunction in a pilot study of patients with type 2 diabetes mellitus and coronary artery disease. Circulation Cardiovascu Imaging. 2014; 7:274-281.
  • [16]McCormick LM, Hoole SP, White PA, Read PA, Axell RG, Clarke SJ et al.. Pre-treatment with glucagon-like peptide-1 protects against ischemic left ventricular dysfunction and stunning without a detected difference in myocardial substrate utilization. JACC Cardiovasc Interv. 2015; 8:292-301.
  • [17]Heck PM, Hoole SP, Khan SN, Dutka DP. Hyperinsulinemia improves ischemic LV function in insulin resistant subjects. Cardiovasc Diabetol. 2010; 9:27. BioMed Central Full Text
  • [18]DeFronzo RA, Tobin JD, Andres R. Glucose clamp technique: a method for quantifying insulin secretion and resistance. Am J Physiol. 1979; 237:E214-E223.
  • [19]Pellerin D, Sharma R, Elliott P, Veyrat C. Tissue Doppler, strain, and strain rate echocardiography for the assessment of left and right systolic ventricular function. Heart. 2003; 89 Suppl 3:iii9-iii17.
  • [20]Madler CF, Payne N, Wilkenshoff U, Cohen A, Derumeaux GA, Pierard LA et al.. Non-invasive diagnosis of coronary artery disease by quantitative stress echocardiography: optimal diagnostic models using off-line tissue Doppler in the MYDISE study. Eur Heart J. 2003; 24:1584-1594.
  • [21]Voigt JU, Exner B, Schmiedehausen K, Huchzermeyer C, Reulbach U, Nixdorff U et al.. Strain-rate imaging during dobutamine stress echocardiography provides objective evidence of inducible ischemia. Circulation. 2003; 107:2120-2126.
  • [22]Voigt JU, Nixdorff U, Bogdan R, Exner B, Schmiedehausen K, Platsch G et al.. Comparison of deformation imaging and velocity imaging for detecting regional inducible ischaemia during dobutamine stress echocardiography. Eur Heart J. 2004; 25:1517-1525.
  • [23]Tesfamariam B, Brown ML, Deykin D, Cohen RA. Elevated glucose promotes generation of endothelium-derived vasoconstrictor prostanoids in rabbit aorta. J Clin Invest. 1990; 85:929-932.
  • [24]Kawano H, Motoyama T, Hirashima O, Hirai N, Miyao Y, Sakamoto T et al.. Hyperglycemia rapidly suppresses flow-mediated endothelium-dependent vasodilation of brachial artery. J Am Coll Cardiol. 1999; 34:146-154.
  • [25]Shige H, Ishikawa T, Suzukawa M, Ito T, Nakajima K, Higashi K et al.. Endothelium-dependent flow-mediated vasodilation in the postprandial state in type 2 diabetes mellitus. Am J Cardiol. 1999; 84(1272–4):A9.
  • [26]Tesfamariam B, Cohen RA. Role of superoxide anion and endothelium in vasoconstrictor action of prostaglandin endoperoxide. Am J Physiol. 1992; 262:H1915-H1919.
  • [27]Ferrannini E, Galvan AQ, Gastaldelli A, Camastra S, Sironi AM, Toschi E et al.. Insulin: new roles for an ancient hormone. Eur J Clin Invest. 1999; 29:842-852.
  • [28]Ferrannini E, Santoro D, Bonadonna R, Natali A, Parodi O, Camici PG. Metabolic and hemodynamic effects of insulin on human hearts. Am J Physiol. 1993; 264:E308-E315.
  • [29]Srinivasan M, Herrero P, McGill JB, Bennik J, Heere B, Lesniak D et al.. The effects of plasma insulin and glucose on myocardial blood flow in patients with type 1 diabetes mellitus. J Am Coll Cardiol. 2005; 46:42-48.
  • [30]Abdelmoneim SS, Hagen ME, Mendrick E, Pattan V, Wong B, Norby B et al.. Acute hyperglycemia reduces myocardial blood flow reserve and the magnitude of reduction is associated with insulin resistance: a study in nondiabetic humans using contrast echocardiography. Heart Vessels. 2013; 28:757-768.
  • [31]Nielsen R, Norrelund H, Kampmann U, Botker HE, Moller N, Wiggers H. Effect of acute hyperglycemia on left ventricular contractile function in diabetic patients with and without heart failure: two randomized cross-over studies. PLoS One. 2013; 8:e53247.
  • [32]Miki T, Yuda S, Kouzu H, Miura T. Diabetic cardiomyopathy: pathophysiology and clinical features. Heart Fail Rev. 2013; 18:149-166.
  • [33]Cadeddu C, Nocco S, Piano D, Deidda M, Cossu E, Baroni MG et al.. Early impairment of contractility reserved in patients with insulin resistance in comparison with health subjects. Cardiovasc Diabetol. 2013; 12:66. BioMed Central Full Text
  • [34]Cognet T, Vervueren PL, Dercle L, Bastie D, Richaud R, Berry M et al.. New concept of myocardial longitudinal strain reserve assessed by a dipyridamole infusion using 2D-strain echocardiography: the impact of diabetes and age, and the prognostic value. Cardiovasc Diabetol. 2013; 12:84. BioMed Central Full Text
  • [35]D’Andrea A, Nistri S, Castaldo F, Galderisi M, Mele D, Agricola E et al.. Working group nucleus on echocardiography of Italian society of cardiology. Int J Cardiol. 2012; 154:250-255.
  • [36]Zhao T, Parikh P, Bhashyam S, Bolukoglu H, Poornima I, Shen YT et al.. Direct effects of glucagon-like peptide-1 on myocardial contractility and glucose uptake in normal and postischemic isolated rat hearts. J Pharmacol Exp Ther. 2006; 317:1106-1113.
  • [37]Zhao TC. Glucagon-like peptide-1 (GLP-1) and protective effects in cardiovascular disease: a new therapeutic approach for myocardial protection. Cardiovasc Diabetol. 2013; 12:90. BioMed Central Full Text
  • [38]Clarke SJ, McCormick LM, Dutka DP. Optimising cardioprotection during myocardial ischaemia: targeting potential intracellular pathways with glucagon-like peptide-1. Cardiovasc Diabetol. 2014; 13:12. BioMed Central Full Text
  • [39]McCormick LM, Kydd AC, Dutka DP. Cardiac protection via metabolic modulation: an emerging role for incretin-based therapies? Cardiovasc Hematol Agents Med Chem. 2012; 10:319-324.
  • [40]Nikolaidis LA, Elahi D, Hentosz T, Doverspike A, Huerbin R, Zourelias L et al.. Recombinant glucagon-like peptide-1 increases myocardial glucose uptake and improves left ventricular performance in conscious dogs with pacing-induced dilated cardiomyopathy. Circulation. 2004; 110:955-961.
  • [41]Bao W, Aravindhan K, Alsaid H, Chendrimada T, Szapacs M, Citerone DR et al.. Albiglutide, a long lasting glucagon-like peptide-1 analog, protects the rat heart against ischemia/reperfusion injury: evidence for improving cardiac metabolic efficiency. PLoS One. 2011; 6:e23570.
  • [42]Kavianipour M, Ehlers MR, Malmberg K, Ronquist G, Ryden L, Wikstrom G et al.. Glucagon-like peptide-1 (7-36) amide prevents the accumulation of pyruvate and lactate in the ischemic and non-ischemic porcine myocardium. Peptides. 2003; 24:569-578.
  • [43]Liedtke AJ. Alterations of carbohydrate and lipid metabolism in the acutely ischemic heart. Prog Cardiovasc Dis. 1981; 23:321-336.
  文献评价指标  
  下载次数:11次 浏览次数:24次