期刊论文详细信息
Longevity & Healthspan
From cellular senescence to age-associated diseases: the miRNA connection
Johannes Grillari2  Elisabeth Schraml1 
[1] Department of Biotechnology, BOKU VIBT University of Natural Resources and Life Sciences, Vienna, Austria;Evercyte GmbH, Muthgasse 18, Vienna, 1190, Austria
关键词: Sarcopenia;    Cataract;    Kidney disease;    Diabetes mellitus;    Osteoporosis;    Vascular aging;    Age-related diseases;    Non-coding RNA;    MicroRNA;    Aging;    Cellular senescence;   
Others  :  804064
DOI  :  10.1186/2046-2395-1-10
 received in 2012-04-19, accepted in 2012-08-20,  发布年份 2012
PDF
【 摘 要 】

Cellular senescence has evolved from an in-vitro model system to study aging in vitro to a multifaceted phenomenon of in-vivo importance as senescent cells in vivo have been identified and their removal delays the onset of age-associated diseases in a mouse model system. From the large emerging class of non-coding RNAs, miRNAs have only recently been functionally implied in the regulatory networks that are modified during the aging process. Here we summarize examples of similarities between the differential expression of miRNAs during senescence and age-associated diseases and suggest that these similarities might emphasize the importance of senescence for the pathogenesis of age-associated diseases. Understanding such a connection on the level of miRNAs might offer valuable opportunities for designing novel diagnostic and therapeutic strategies.

【 授权许可】

   
2012 Schraml and Grillari; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20140708053148197.pdf 1571KB PDF download
Figure 6. 83KB Image download
Figure 5. 73KB Image download
Figure 4. 112KB Image download
Figure 3. 69KB Image download
Figure 2. 102KB Image download
Figure 1. 101KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

【 参考文献 】
  • [1]Hayflick L: The limited in vitro lifetime of human diploid cell strains. Exp Cell Res 1965, 37:614-636.
  • [2]Bodnar A, Ooellette M, Frolkis M, Holt SE, Chiu CP, Morin GB, Harley CB, Shay JW, Lichtsteiner S, Wright W: Extension of life-span by introduction of telomerase into normal human cells. Science 1998, 279:349-352.
  • [3]Palm W, de Lange T: How shelterin protects mammalian telomeres. Annu Rev Genet 2008, 42:301-334.
  • [4]Ben-Porath I, Weinberg RA: The signals and pathways activating cellular senescence. Int J Biochem Cell Biol 2005, 37:961-976.
  • [5]Cabrera T, Garrido V, Concha A, MartÃn J, Esquivias J, Oliva MR, Ruiz-Cabello F, Serrano S, Garrido F: Hla molecules in basal cell carcinoma of the skin. Immunobiology 1992, 185:440-452.
  • [6]Maruyama J, Naguro I, Takeda K, Ichijo H: Stress-activated map kinase cascades in cellular senescence. Curr Med Chem 2009, 16:1229-1235.
  • [7]Campisi J, d’Adda di Fagagna F: Cellular senescence: When bad things happen to good cells. Nat Rev Mol Cell Biol 2007, 8:729-740.
  • [8]Kuilman T, Peeper DS: Senescence-messaging secretome: Sms-ing cellular stress. Nat Rev Cancer 2009, 9:81-94.
  • [9]Wang E: Regulation of apoptosis resistance and ontogeny of age-dependent diseases. Exp Gerontol 1997, 32:471-484.
  • [10]Hampel B, Malisan F, Niederegger H, Testi R, Jansen-Durr P: Differential regulation of apoptotic cell death in senescent human cells. Exp Gerontol 2004, 39:1713-1721.
  • [11]Campisi J, Sedivy J: How does proliferative homeostasis change with age? What causes it and how does it contribute to aging? J Gerontol A Biol Sci Med Sci 2009, 64:164-166.
  • [12]Wang XH, Qian RZ, Zhang W, Chen SF, Jin HM, Hu RM: Microrna-320 expression in myocardial microvascular endothelial cells and its relationship with insulin-like growth factor-1 in type 2 diabetic rats. Clin Exp Pharmacol Physiol 2009, 36:181-188.
  • [13]Herbig U, Ferreira M, Condel L, Carey D, Sedivy JM: Cellular senescence in aging primates. Science 2006, 311:1257.
  • [14]Krizhanovsky V, Yon M, Dickins RA, Hearn S, Simon J, Miething C, Yee H, Zender L, Lowe SW: Senescence of activated stellate cells limits liver fibrosis. Cell 2008, 134:657-667.
  • [15]Melk A, Kittikowit W, Sandhu I, Halloran KM, Grimm P, Schmidt BM, Halloran PF: Cell senescence in rat kidneys in vivo increases with growth and age despite lack of telomere shortening. Kidney Int 2003, 63:2134-2143.
  • [16]Melk A, Schmidt BM, Braun H, Vongwiwatana A, Urmson J, Zhu LF, Rayner D, Halloran PF: Effects of donor age and cell senescence on kidney allograft survival. Am J Transplant 2009, 9:114-123.
  • [17]Koppelstaetter C, Schratzberger G, Perco P, Hofer J, Mark W, Ollinger R, Oberbauer R, Schwarz C, Mitterbauer C, Kainz A, Karkoszka H, Wiecek A, Mayer B, Mayer G: Markers of cellular senescence in zero hour biopsies predict outcome in renal transplantation. Aging Cell 2008, 7:491-497.
  • [18]Erusalimsky JD: Vascular endothelial senescence: From mechanisms to pathophysiology. J Appl Physiol 2009, 106:326-332.
  • [19]Minamino T, Komuro I: Vascular cell senescence: Contribution to atherosclerosis. Circ Res 2007, 100:15-26.
  • [20]Bitto A, Sell C, Crowe E, Lorenzini A, Malaguti M, Hrelia S, Torres C: Stress-induced senescence in human and rodent astrocytes. Exp Cell Res 2010, 316:2961-2968.
  • [21]Bhat R, Crowe EP, Bitto A, Moh M, Katsetos CD, Garcia FU, Johnson FB, Trojanowski JQ, Sell C, Torres C: PLoS One. 2012, 7(9):e45069. Epub 2012 Sep 12
  • [22]Rodier F, Campisi J: Four faces of cellular senescence. J Cell Biol 2011, 192:547-556.
  • [23]Krtolica A, Campisi J: Cancer and aging: A model for the cancer promoting effects of the aging stroma. Int J Biochem Cell Biol 2002, 34:1401-1414.
  • [24]Rodier F, Campisi J, Bhaumik D: Two faces of p53: Aging and tumor suppression. Nucleic Acids Res 2007, 35:7475-7484.
  • [25]Erusalimsky J, Skene C: Mechanisms of endothelial senescence. Exp Physiol 2009, 94:299-304.
  • [26]Melk A: Senescence of renal cells: Molecular basis and clinical implications. Nephrol Dial Transplant 2003, 18:2474-2478.
  • [27]Baker DJ, Wijshake T, Tchkonia T, LeBrasseur NK, Childs BG, van de Sluis B, Kirkland JL, van Deursen JM: Clearance of p16ink4a-positive senescent cells delays ageing-associated disorders. Nature 2011, 479:232-236.
  • [28]Baker DJ, Perez-Terzic C, Jin F, Pitel K, Niederländer NJ, Jeganathan K, Yamada S, Reyes S, Rowe L, Hiddinga HJ, Eberhardt NL, Terzic A, van Deursen JM: Opposing roles for p16ink4a and p19arf in senescence and ageing caused by bubr1 insufficiency. Nat Cell Biol 2008, 10:825-836.
  • [29]Ding Z, Wu CJ, Jaskelioff M, Ivanova E, Kost-Alimova M, Protopopov A, Chu GC, Wang G, Lu X, Labrot ES, Hu J, Wang W, Xiao Y, Zhang H, Zhang J, Gan B, Perry SR, Jiang S, Li L, Horner JW, Wang YA, Chin L, Depinho RA: Telomerase reactivation following telomere dysfunction yields murine prostate tumors with bone metastases. Cell 2012, 148:896-907.
  • [30]Jaskelioff M, Muller FL, Paik JH, Thomas E, Jiang S, Adams AC, Sahin E, Kost-Alimova M, Protopopov A, Cadiñanos J, Horner JW, Maratos-Flier E, Depinho RA: Telomerase reactivation reverses tissue degeneration in aged telomerase-deficient mice. Nature 2011, 469:102-106.
  • [31]Sahin E, Colla S, Liesa M, Moslehi J, Müller FL, Guo M, Cooper M, Kotton D, Fabian AJ, Walkey C, Maser RS, Tonon G, Foerster F, Xiong R, Wang YA, Shukla SA, Jaskelioff M, Martin ES, Heffernan TP, Protopopov A, Ivanova E, Mahoney JE, Kost-Alimova M, Perry SR, Bronson R, Liao R, Mulligan R, Shirihai OS, Chin L, DePinho RA: Telomere dysfunction induces metabolic and mitochondrial compromise. Nature 2011, 470:359-365.
  • [32]Bernardes de Jesus B, Vera E, Schneeberger K, Tejera AM, Ayuso E, Bosch F, Blasco MA: Telomerase gene therapy in adult and old mice delays aging and increases longevity without increasing cancer. EMBO Mol Med 2012, 4:691-704.
  • [33]Lee RC, Feinbaum RL, Ambros V: The c. Elegans heterochronic gene lin-4 encodes small rnas with antisense complementarity to lin-14. Cell 1993, 75:843-854.
  • [34]Berezikov E, Chung WJ, Willis J, Cuppen E, Lai EC: Mammalian mirtron genes. Mol Cell 2007, 28:328-336.
  • [35]Krol J, Loedige I, Filipowicz W: The widespread regulation of microrna biogenesis, function and decay. Nat Rev Genet 2010, 11:597-610.
  • [36]Brennecke J, Stark A, Russell RB, Cohen SM: Principles of microrna-target recognition. PLoS Biol 2005, 3:e85.
  • [37]Lim LP, Lau NC, Garrett-Engele P, Grimson A, Schelter JM, Castle J, Bartel DP, Linsley PS, Johnson JM: Microarray analysis shows that some micrornas downregulate large numbers of target mrnas. Nature 2005, 433:769-773.
  • [38]Stefani G, Slack FJ: Small non-coding rnas in animal development. Nat Rev Mol Cell Biol 2008, 9:219-230.
  • [39]Roberts AP, Lewis AP, Jopling CL: Mir-122 activates hepatitis c virus translation by a specialized mechanism requiring particular rna components. Nucleic Acids Res 2011, 39:7716-7729.
  • [40]Dai L, Tsai-Morris CH, Sato H, Villar J, Kang JH, Zhang J, Dufau ML: Testis-specific mirna-469 up-regulated in gonadotropin-regulated testicular rna helicase (grth/ddx25)-null mice silences transition protein 2 and protamine 2 messages at sites within coding region: Implications of its role in germ cell development. J Biol Chem 2011, 286:44306-44318.
  • [41]Di Giammartino DC, Nishida K, Manley JL: Mechanisms and consequences of alternative polyadenylation. Mol Cell 2011, 43:853-866.
  • [42]Tan S, Guo J, Huang Q, Chen X, Li-Ling J, Li Q, Ma F: Retained introns increase putative microrna targets within 3′utrs of human mrna. FEBS Lett 2007, 581:1081-1086.
  • [43]Melk A, Ramassar V, Helms LM, Moore R, Rayner D, Solez K, Halloran PF: Telomere shortening in kidneys with age. J Am Soc Nephrol 2000, 11:444-453.
  • [44]Sandberg R, Neilson JR, Sarma A, Sharp PA, Burge CB: Proliferating cells express mrnas with shortened 3′untranslated regions and fewer microrna target sites. Science 2008, 320:1643-1647.
  • [45]Mayr C, Bartel DP: Widespread shortening of 3′utrs by alternative cleavage and polyadenylation activates oncogenes in cancer cells. Cell 2009, 138:673-684.
  • [46]Chatterjee S, Grosshans H: Active turnover modulates mature microrna activity in caenorhabditis elegans. Nature 2009, 461:546-549.
  • [47]Chatterjee S, Fasler M, Büssing I, Grosshans H: Target-mediated protection of endogenous micrornas in c. Elegans. Dev Cell 2011, 20:388-396.
  • [48]Pincus Z, Smith-Vikos T, Slack FJ: Microrna predictors of longevity in caenorhabditis elegans. PLoS Genet 2011, 7:e1002306.
  • [49]de Lencastre A, Pincus Z, Zhou K, Kato M, Lee SS, Slack FJ: Micrornas both promote and antagonize longevity in c. Elegans. Curr Biol 2010, 20:2159-2168.
  • [50]Smith-Vikos T, Slack FJ: Micrornas and their roles in aging. J Cell Sci 2012, 125:7-17.
  • [51]Hackl M, Brunner S, Fortschegger K, Schreiner C, Micutkova L, Mück C, Laschober GT, Lepperdinger G, Sampson N, Berger P, Herndler-Brandstetter D, Wieser M, Kühnel H, Strasser A, Breitenbach M, Rinnerthaler M, Eckhart L, Mildner M, Tschachler E, Papak C, Trost A, Bauer J, Scheideler M, Trajanoski Z, Grillari-Voglauer R, Grubeck-Loebenstein B, Jansen-Durr P, Grillari J: Mir-17, mir-19b, mir-20a and mir-106a are down-regulated in human aging. Aging Cell 2010, 9:291-296.
  • [52]Grillari J, Hackl M, Grillari-Voglauer R: Mir-17-92 cluster: Ups and downs in cancer and ageing. Biogerontology 2010, 11:501-506.
  • [53]Gorospe M, Abdelmohsen K: Microregulators come of age in senescence. Trends Genet 2011, 27:233-241.
  • [54]Noren Hooten N, Abdelmohsen K, Gorospe M, Ejiogu N, Zonderman AB, Evans MK: Microrna expression patterns reveal differential expression of target genes with age. PLoS One 2010, 5:e10724.
  • [55]Srikantan S, Gorospe M, Abdelmohsen K: Senescence-associated micrornas linked to tumorigenesis. Cell Cycle 2011, 10:3211-3212.
  • [56]Mudhasani R, Zhu Z, Hutvagner G, Eischen CM, Lyle S, Hall LL, Lawrence JB, Imbalzano AN, Jones SN: Loss of mirna biogenesis induces p19arf-p53 signaling and senescence in primary cells. J Cell Biol 2008, 181:1055-1063.
  • [57]Maes OC, Sarojini H, Wang E: Stepwise up-regulation of microrna expression levels from replicating to reversible and irreversible growth arrest states in wi-38 human fibroblasts. J Cell Physiol 2009, 221:109-119.
  • [58]Lal A, Kim HH, Abdelmohsen K, Kuwano Y, Pullmann R Jr, Srikantan S, Subrahmanyam R, Martindale JL, Yang X, Ahmed F, Navarro F, Dykxhoorn D, Lieberman J, Gorospe M: P16(ink4a) translation suppressed by mir-24. PLoS One 2008, 3:e1864.
  • [59]Bhaumik D, Scott GK, Schokrpur S, Patil CK, Orjalo AV, Rodier F, Lithgow GJ, Campisi J: Micrornas mir-146a/b negatively modulate the senescence-associated inflammatory mediators il-6 and il-8. Aging 2009, 1:402-411.
  • [60]Brosh R, Shalgi R, Liran A, Landan G, Korotayev K, Nguyen GH, Enerly E, Johnsen H, Buganim Y, Solomon H, Goldstein I, Madar S, Goldfinger N, Borresen-Dale AL, Ginsberg D, Harris CC, Pilpel Y, Oren M, Rotter V: P53-repressed mirnas are involved with e2f in a feed-forward loop promoting proliferation. Mol Syst Biol 2008, 4:229.
  • [61]Marasa BS, Srikantan S, Martindale JL, Kim MM, Lee EK, Gorospe M, Abdelmohsen K: Microrna profiling in human diploid fibroblasts uncovers mir-519 role in replicative senescence. Aging (Albany NY) 2010, 2:333-343.
  • [62]Dhahbi JM, Atamna H, Boffelli D, Magis W, Spindler SR, Martin DI: Deep sequencing reveals novel micrornas and regulation of microrna expression during cell senescence. PLoS One 2011, 6:e20509.
  • [63]Faraonio R, Salerno P, Passaro F, Sedia C, Iaccio A, Bellelli R, Nappi TC, Comegna M, Romano S, Salvatore G, Santoro M, Cimino F: A set of mirnas participates in the cellular senescence program in human diploid fibroblasts. Cell Death Differ 2012, 19:713-721.
  • [64]Shin KH, Pucar A, Kim RH, Bae SD, Chen W, Kang MK, Park NH: Identification of senescence-inducing micrornas in normal human keratinocytes. Int J Oncol 2011, 39:1205-1211.
  • [65]Rivetti di Val Cervo P, Lena AM, Nicoloso M, Rossi S, Mancini M, Zhou H, Saintigny G, Dellambra E, Odorisio T, Mahe C, Calin GA, Candi E, Melino G: P63-microrna feedback in keratinocyte senescence. Proc Natl Acad Sci USA 2012, 109:1133-1138.
  • [66]Menghini R, Casagrande V, Cardellini M, Martelli E, Terrinoni A, Amati F, Vasa-Nicotera M, Ippoliti A, Novelli G, Melino G, Lauro R, Federici M: Microrna 217 modulates endothelial cell senescence via silent information regulator 1. Circulation 2009, 120:1524-1532.
  • [67]Rippe C, Blimline M, Magerko KA, Lawson BR, LaRocca TJ, Donato AJ, Seals DR: Microrna changes in human arterial endothelial cells with senescence: Relation to apoptosis, enos and inflammation. Exp Gerontol 2012, 47:45-51.
  • [68]Bai XY, Ma Y, Ding R, Fu B, Shi S, Chen XM: Mir-335 and mir-34a promote renal senescence by suppressing mitochondrial antioxidative enzymes. J Am Soc Nephrol 2011, 22:1252-1261.
  • [69]Wagner W, Horn P, Castoldi M, Diehlmann A, Bork S, Saffrich R, Benes V, Blake J, Pfister S, Eckstein V, Ho AD: Replicative senescence of mesenchymal stem cells: A continuous and organized process. PLoS One 2008, 3:e2213.
  • [70]Kim YJ, Hwang SH, Lee SY, Shin KK, Cho HH, Bae YC, Jung JS: Mir-486-5p induces replicative senescence of human adipose tissue-derived mesenchymal stem cells and its expression is controlled by high glucose. Stem Cells Dev 2012, 21:1749-1760.
  • [71]Poliseno L, Pitto L, Simili M, Mariani L, Riccardi L, Ciucci A, Rizzo M, Evangelista M, Mercatanti A, Pandolfi PP, Rainaldi G: The proto-oncogene lrf is under post-transcriptional control of mir-20a: Implications for senescence. PLoS One 2008, 3:e2542.
  • [72]Pitto L, Rizzo M, Simili M, Colligiani D, Evangelista M, Mercatanti A, Mariani L, Cremisi F, Rainaldi G: Mir-290 acts as a physiological effector of senescence in mouse embryo fibroblasts. Physiol Genomics 2009, 39:210-218.
  • [73]Li G, Luna C, Qiu J, Epstein DL, Gonzalez P: Alterations in microrna expression in stress-induced cellular senescence. Mech Ageing Dev 2009, 130:731-741.
  • [74]Borgdorff V, Lleonart ME, Bishop CL, Fessart D, Bergin AH, Overhoff MG, Beach DH: Multiple micrornas rescue from ras-induced senescence by inhibiting p21(waf1/cip1). Oncogene 2010, 29:2262-2271.
  • [75]Toledano H, D’Alterio C, Czech B, Levine E, Jones DL: The let-7-imp axis regulates ageing of the drosophila testis stem-cell niche. Nature 2012, 485:605-610.
  • [76]Chivukula RR, Mendell JT: Circular reasoning: Micrornas and cell-cycle control. Trends Biochem Sci 2008, 33:474-481.
  • [77]de Zhuo X, Niu XH, Chen YC, Xin DQ, Guo YL, Mao ZB: Vitamin D3 up-regulated protein 1(VDUP1) is regulated by FOXO3A and miR-17-5p at the transcriptional and post-transcriptional levels, respectively, in senescent fibroblasts. J Biol Chem 2010, 285:31491-31501.
  • [78]Wang M, Cheng Z, Tian T, Chen J, Dou F, Guo M, Cong YS: Differential expression of oncogenic mirnas in proliferating and senescent human fibroblasts. Mol Cell Biochem 2011, 352:271-279.
  • [79]Hong L, Lai M, Chen M, Xie C, Liao R, Kang YJ, Xiao C, Hu WY, Han J, Sun P: The mir-17-92 cluster of micrornas confers tumorigenicity by inhibiting oncogene-induced senescence. Cancer Res 2010, 70:8547-8557.
  • [80]Cufi S, Vazquez-Martin A, Oliveras-Ferraros C, Quirantes R, Segura-Carretero A, Micol V, Joven J, Bosch-Barrera J, Del Barco S, Martin-Castillo B, Vellon L, Menendez JA: Metformin lowers the threshold for stress-induced senescence: A role for the microrna-200 family and mir-205. Cell Cycle 2012, 11:1235-1246.
  • [81]Magenta A, Cencioni C, Fasanaro P, Zaccagnini G, Greco S, Sarra-Ferraris G, Antonini A, Martelli F, Capogrossi MC: Mir-200c is upregulated by oxidative stress and induces endothelial cell apoptosis and senescence via zeb1 inhibition. Cell Death Differ 2011, 18:1628-1639.
  • [82]Martin GM, Bergman A, Barzilai N: Genetic determinants of human health span and life span: Progress and new opportunities. PLoS Genet 2007, 3:e125.
  • [83]Lovat F, Valeri N, Croce CM: Micrornas in the pathogenesis of cancer. Semin Oncol 2011, 38:724-733.
  • [84]Wang Y, Liang Y, Lu Q: Microrna epigenetic alterations: Predicting biomarkers and therapeutic targets in human diseases. Clin Genet 2008, 74:307-315.
  • [85]Kato M, Slack FJ: Micrornas: Small molecules with big roles - c. Elegans to human cancer. Biol Cell 2008, 100:71-81.
  • [86]Wang B, Koh P, Winbanks C, Coughlan MT, McClelland A, Watson A, Jandeleit-Dahm K, Burns WC, Thomas MC, Cooper ME, Kantharidis P: miR-200a Prevents renal fibrogenesis through repression of TGF-beta2 expression. Diabetes 2011, 60:280-287.
  • [87]Raitoharju E, Lyytikäinen LP, Levula M, Oksala N, Mennander A, Tarkka M, Klopp N, Illig T, Kähönen M, Karhunen PJ, Laaksonen R, Lehtimäki T: Mir-21, mir-210, mir-34a, and mir-146a/b are up-regulated in human atherosclerotic plaques in the tampere vascular study. Atherosclerosis 2011, 219:211-217.
  • [88]Harris TA, Yamakuchi M, Ferlito M, Mendell JT, Lowenstein CJ: Microrna-126 regulates endothelial expression of vascular cell adhesion molecule 1. Proc Natl Acad Sci U S A 2008, 105:1516-1521.
  • [89]Chen CZ, Li L, Lodish HF, Bartel DP: Micrornas modulate hematopoietic lineage differentiation. Science 2004, 303:83-86.
  • [90]Xiao C, Srinivasan L, Calado DP, Patterson HC, Zhang B, Wang J, Henderson JM, Kutok JL, Rajewsky K: Lymphoproliferative disease and autoimmunity in mice with increased mir-17-92 expression in lymphocytes. Nat Immunol 2008, 9:405-414.
  • [91]Sun Y, Koo S, White N, Peralta E, Esau C, Dean NM, Perera RJ: Development of a micro-array to detect human and mouse micrornas and characterization of expression in human organs. Nucleic Acids Res 2004, 32:e188.
  • [92]Zhou B, Wang S, Mayr C, Bartel DP, Lodish HF: Mir-150, a microrna expressed in mature b and t cells, blocks early b cell development when expressed prematurely. Proc Natl Acad Sci U S A 2007, 104:7080-7085.
  • [93]Brunet A, Sweeney LB, Sturgill JF, Chua KF, Greer PL, Lin Y, Tran H, Ross SE, Mostoslavsky R, Cohen HY, Hu LS, Cheng HL, Jedrychowski MP, Gygi SP, Sinclair DA, Alt FW, Greenberg ME: Stress-dependent regulation of foxo transcription factors by the sirt1 deacetylase. Science 2004, 303:2011-2015.
  • [94]Esau C, Kang X, Peralta E, Hanson E, Marcusson EG, Ravichandran LV, Sun Y, Koo S, Perera RJ, Jain R, Dean NM, Freier SM, Bennett CF, Lollo B, Griffey R: Microrna-143 regulates adipocyte differentiation. J Biol Chem 2004, 279:52361-52365.
  • [95]Elia L, Quintavalle M, Zhang J, Contu R, Cossu L, Latronico MV, Peterson KL, Indolfi C, Catalucci D, Chen J, Courtneidge SA, Condorelli G: The knockout of mir-143 and −145 alters smooth muscle cell maintenance and vascular homeostasis in mice: Correlates with human disease. Cell Death Differ 2009, 16:1590-1598.
  • [96]Li Z, Hassan MQ, Volinia S, van Wijnen AJ, Stein JL, Croce CM, Lian JB, Stein GS: A microrna signature for a bmp2-induced osteoblast lineage commitment program. Proc Natl Acad Sci U S A 2008, 105:13906-13911.
  • [97]Goettsch C, Rauner M, Pacyna N, Hempel U, Bornstein SR, Hofbauer LC: Mir-125b regulates calcification of vascular smooth muscle cells. Am J Pathol 2011, 179:1594-1600.
  • [98]Poy MN, Eliasson L, Krutzfeldt J, Kuwajima S, Ma X, Macdonald PE, Pfeffer S, Tuschl T, Rajewsky N, Rorsman P, Stoffel M: A pancreatic islet-specific microrna regulates insulin secretion. Nature 2004, 432:226-230.
  • [99]Kapinas K, Kessler CB, Delany AM: Mir-29 suppression of osteonectin in osteoblasts: Regulation during differentiation and by canonical wnt signaling. J Cell Biochem 2009, 108:216-224.
  • [100]Hennessy E, Clynes M, Jeppesen PB, O’Driscoll L: Identification of micrornas with a role in glucose stimulated insulin secretion by expression profiling of min6 cells. Biochem Biophys Res Commun 2010, 396:457-462.
  • [101]Fukao T, Fukuda Y, Kiga K, Sharif J, Hino K, Enomoto Y, Kawamura A, Nakamura K, Takeuchi T, Tanabe M: An evolutionarily conserved mechanism for microrna-223 expression revealed by microrna gene profiling. Cell 2007, 129:617-631.
  • [102]Peng CH, Liu JH, Woung LC, Lin TJ, Chiou SH, Tseng PC, Du WY, Cheng CK, Hu CC, Chien KH, Chen SJ: Micrornas and cataracts: Correlation among let-7 expression, age and the severity of lens opacity. Br J Ophthalmol 2012, 96:747-751.
  • [103]Krek A, Grün D, Poy M, Wolf R, Rosenberg L, Epstein E, MacMenamin P, da Piedade I, Gunsalus K, Stoffel M, Rajewsky N: Combinatorial microrna target predictions. Nat Genet 2005, 37:495-500.
  • [104]Hughes AE, Bradley DT, Campbell M, Lechner J, Dash DP, Simpson DA, Willoughby CE: Mutation altering the mir-184 seed region causes familial keratoconus with cataract. Am J Hum Genet 2011, 89:628-633.
  • [105]Hoffmann A, Huang Y, Suetsugu-Maki R, Ringelberg CS, Tomlinson CR, Rio-Tsonis KD, Tsonis PA: Implication of the mir-184 and mir-204 competitive rna network in control of mouse secondary cataract. Mol Med 2012, 18:528-538.
  • [106]Najafi-Shoushtari SH: Micrornas in cardiometabolic disease. Curr Atheroscler Rep 2011, 13:202-207.
  • [107]Cheung TH, Quach NL, Charville GW, Liu L, Park L, Edalati A, Yoo B, Hoang P, Rando TA: Maintenance of muscle stem-cell quiescence by microrna-489. Nature 2012, 482:524-528.
  • [108]Sun H, Li QW, Lv XY, Ai JZ, Yang QT, Duan JJ, Bian GH, Xiao Y, Wang YD, Zhang Z, Liu YH, Tan RZ, Yang Y, Wei YQ, Zhou Q: Microrna-17 post-transcriptionally regulates polycystic kidney disease-2 gene and promotes cell proliferation. Mol Biol Rep 2010, 37:2951-2958.
  • [109]Vandervoot AA, Symons TB: Functional and metabolic consequences of sarcopenia. Can J Appl Physiol 2001, 26:90-101.
  • [110]Wang B, Komers R, Carew R, Winbanks CE, Xu B, Herman-Edelstein M, Koh P, Thomas M, Jandeleit-Dahm K, Gregorevic P, Cooper ME, Kantharidis P: Suppression of microrna-29 expression by tgf-β1 promotes collagen expression and renal fibrosis. J Am Soc Nephrol 2012, 23:252-265.
  • [111]Koning M, Werker PM, van der Schaft DW, Bank RA, Harmsen MC: Microrna-1 and microrna-206 improve differentiation potential of human satellite cells: A novel approach for tissue engineering of skeletal muscle. Tissue Eng Part A 2011, 18:889-898.
  • [112]RR K: Heart and cardiovascular system. In Handbook of the Biology of Aging. Edited by Finch CE, Hayflick L. New York: Van Nostrand Reinhold; 1977:281-317.
  • [113]van der Loo B, Labugger R, Skepper JN, Bachschmid M, Kilo J, Powell JM, Palacios-Callender M, Erusalimsky JD, Quaschning T, Malinski T, Gygi D, Ullrich V, Lüscher TF: Enhanced peroxynitrite formation is associated with vascular aging. J Exp Med 2000, 192:1731-1744.
  • [114]Weingand KW, Clarkson TB, Adams MR, Bostrom AD: Effects of age and/or puberty on coronary artery atherosclerosis in cynomolgus monkeys. Atherosclerosis 1986, 62:137-144.
  • [115]Celermajer DS, Sorensen KE, Spiegelhalter DJ, Georgakopoulos D, Robinson J, Deanfield JE: Aging is associated with endothelial dysfunction in healthy men years before the age-related decline in women. J Am Coll Cardiol 1994, 24:471-476.
  • [116]Lakatta EG, Levy D: Arterial and cardiac aging: Major shareholders in cardiovascular disease enterprises: Part i: Aging arteries: A “Set up” For vascular disease. Circulation 2003, 107:139-146.
  • [117]Rivard A, Fabre JE, Silver M, Chen D, Murohara T, Kearney M, Magner M, Asahara T, Isner JM: Age-dependent impairment of angiogenesis. Circulation 1999, 99:111-120.
  • [118]Weinsaft JW, Edelberg JM: Aging-associated changes in vascular activity: A potential link to geriatric cardiovascular disease. Am J Geriatr Cardiol 2001, 10:348-354.
  • [119]Eggen DA, Solberg LA: Variation of atherosclerosis with age. Lab Invest 1968, 18:571-579.
  • [120]Quintavalle M, Condorelli G, Elia L: Arterial remodeling and atherosclerosis: Mirnas involvement. Vascul Pharmacol 2011, 55:106-110.
  • [121]Suarez Y, Fernandez-Hernando C, Pober JS, Sessa WC: Dicer dependent micrornas regulate gene expression and functions in human endothelial cells. Circ Res 2007, 100:1164-1173.
  • [122]Cheng WH, Muftic D, Muftuoglu M, Dawut L, Morris C, Helleday T, Shiloh Y, Bohr VA: Wrn is required for atm activation and the s-phase checkpoint in response to interstrand crosslink-induced dna double strand breaks. Mol Biol Cell 2008, 19:3923-3933.
  • [123]Kuehbacher A, Urbich C, Zeiher AM, Dimmeler S: Role of dicer and drosha for endothelial microrna expression and angiogenesis. Circ Res 2007, 101:59-68.
  • [124]Fichtlscherer S, De Rosa S, Fox H, Schwietz T, Fischer A, Liebetrau C, Weber M, Hamm CW, Roxe T, Muller-Ardogan M, Bonauer A, Zeiher AM, Dimmeler S: Circulating micrornas in patients with coronary artery disease. Circ Res 2010, 107:677-684.
  • [125]Li T, Cao H, Zhuang J, Wan J, Guan M, Yu B, Li X, Zhang W: Identification of mir-130a, mir-27b and mir-210 as serum biomarkers for atherosclerosis obliterans. Clin Chim Acta 2011, 412:66-70.
  • [126]Zampetaki A, Willeit P, Tilling L, Drozdov I, Prokopi M, Renard JM, Mayr A, Weger S, Schett G, Shah A, Boulanger CM, Willeit J, Chowienczyk PJ, Kiechl S, Mayr M: Prospective study on circulating micrornas and risk of myocardial infarction. J Am Coll Cardiol 2012, 60:290-299.
  • [127]Richter V, Rassoul F, Purschwitz K, Hentschel B, Reuter W, Kuntze T: Circulating vascular cell adhesion molecules vcam-1, icam-1, and e-selectin in dependence on aging. Gerontology 2003, 49:293-300.
  • [128]Sermsathanasawadi N, Ishii H, Igarashi K, Miura M, Yoshida M, Inoue Y, Iwai T: Enhanced adhesion of early endothelial progenitor cells to radiation-induced senescence-like vascular endothelial cells in vitro. J Radiat Res 2009, 50:469-475.
  • [129]Zou Y, Yoon S, Jung KJ, Kim CH, Son TG, Kim MS, Kim YJ, Lee J, Yu BP, Chung HY: Upregulation of aortic adhesion molecules during aging. J Gerontol A Biol Sci Med Sci 2006, 61:232-244.
  • [130]Malik I, Danesh J, Whincup P, Bhatia V, Papacosta O, Walker M, Lennon L, Thomson A, Haskard D: Soluble adhesion molecules and prediction of coronary heart disease: A prospective study and meta-analysis. Lancet 2001, 358:971-976.
  • [131]Zhang Y, Guo W, Wen Y, Xiong Q, Liu H, Wu J, Zou Y, Zhu Y: Scm-198 attenuates early atherosclerotic lesions in hypercholesterolemic rabbits via modulation of the inflammatory and oxidative stress pathways. Atherosclerosis 2012, 224:43-50.
  • [132]Stein S, Matter CM: Protective roles of sirt1 in atherosclerosis. Cell Cycle 2011, 10:640-647.
  • [133]Ji R, Cheng Y, Yue J, Yang J, Liu X, Chen H, Dean DB, Zhang C: Microrna expression signature and antisense-mediated depletion reveal an essential role of microrna in vascular neointimal lesion formation. Circ Res 2007, 100:1579-1588.
  • [134]Bonifacio LN, Jarstfer MB: Mirna profile associated with replicative senescence, extended cell culture, and ectopic telomerase expression in human foreskin fibroblasts. PLoS One 2010, 5:e12519.
  • [135]Ferland-McCollough D, Ozanne SE, Siddle K, Willis AE, Bushell M: The involvement of micrornas in type 2 diabetes. Biochem Soc Trans 2010, 38:1565-1570.
  • [136]Zimmet P, Alberti KG, Shaw J: Global and societal implications of the diabetes epidemic. Nature 2001, 414:782-787.
  • [137]Ribbing J, Hamrén B, Svensson MK, Karlsson MO: A model for glucose, insulin, and beta-cell dynamics in subjects with insulin resistance and patients with type 2 diabetes. J Clin Pharmacol 2010, 50:861-872.
  • [138]Steppan CM, Bailey ST, Bhat S, Brown EJ, Banerjee RR, Wright CM, Patel HR, Ahima RS, Lazar MA: The hormone resistin links obesity to diabetes. Nature 2001, 409:307-312.
  • [139]Testa R, Ceriello A: Pathogenetic loop between diabetes and cell senescence. Diabetes Care 2007, 30:2974-2975.
  • [140]Zampetaki A, Kiechl S, Drozdov I, Willeit P, Mayr U, Prokopi M, Mayr A, Weger S, Oberhollenzer F, Bonora E, Shah A, Willeit J, Mayr M: Plasma microrna profiling reveals loss of endothelial mir-126 and other micrornas in type 2 diabetes. Circ Res 2010, 107:810-817.
  • [141]Kuhlow D, Florian S, von Figura G, Weimer S, Schulz N, Petzke KJ, Zarse K, Pfeiffer AF, Rudolph KL, Ristow M: Telomerase deficiency impairs glucose metabolism and insulin secretion. Aging (Albany NY) 2010, 2:650-658.
  • [142]Hiwatashi Y, Kurahashi Y, Hatada R, Ueno S, Honma T, Yanagihara N, Yanase H, Iwanaga T, Ohizumi Y, Yamakuni T: Glucocorticoid inhibits expression of v-1, a catecholamine biosynthesis regulatory protein, in cultured adrenal medullary cells. FEBS Lett 2002, 528:166-170.
  • [143]He A, Zhu L, Gupta N, Chang Y, Fang F: Overexpression of micro ribonucleic acid 29, highly up-regulated in diabetic rats, leads to insulin resistance in 3 t3-l1 adipocytes. Mol Endocrinol 2007, 21:2785-2794.
  • [144]Martinez I, Cazalla D, Almstead LL, Steitz JA, DiMaio D: Mir-29 and mir-30 regulate b-myb expression during cellular senescence. Proc Natl Acad Sci U S A 2011, 108:522-527.
  • [145]Shi B, Sepp-Lorenzino L, Prisco M, Linsley P, DeAngelis T, Baserga R: Micro rna 145 targets the insulin receptor substrate-1 and inhibits the growth of colon cancer cells. J Biol Chem 2007, 282:32582-32590.
  • [146]Winearls CG, Glassock RJ: Classification of chronic kidney disease in the elderly: Pitfalls and errors. Nephron Clin Pract 2011, (Suppl 1):c2-c4.
  • [147]Melk A, Schmidt BM, Takeuchi O, Sawitzki B, Rayner DC, Halloran PF: Expression of p16ink4a and other cell cycle regulator and senescence associated genes in aging human kidney. Kidney Int 2004, 65:510-520.
  • [148]White NM, Bao TT, Grigull J, Youssef YM, Girgis A, Diamandis M, Fatoohi E, Metias M, Honey RJ, Stewart R, Pace KT, Bjarnason GA, Yousef GM: Mirna profiling for clear cell renal cell carcinoma: Biomarker discovery and identification of potential controls and consequences of mirna dysregulation. J Urol 2011, 186:1077-1083.
  • [149]Monteforte R, Wagner S, Koenigsrainer A, Grillari J, Grillari-Voglauer R, Wieser M: Senescent renal proximal tubular epithelial cells undergo partial epithelial-to-mesenchymal transition. in review
  • [150]Gregory PA, Bert AG, Paterson EL, Barry SC, Tsykin A, Farshid G, Vadas MA, Khew-Goodall Y, Goodall GJ: The mir-200 family and mir-205 regulate epithelial to mesenchymal transition by targeting zeb1 and sip1. Nat Cell Biol 2008, 10:593-601.
  • [151]Oba S, Kumano S, Suzuki E, Nishimatsu H, Takahashi M, Takamori H, Kasuya M, Ogawa Y, Sato K, Kimura K, Homma Y, Hirata Y, Fujita T: Mir-200b precursor can ameliorate renal tubulointerstitial fibrosis. PLoS One 2010, 5:e13614.
  • [152]Burk U, Schubert J, Wellner U, Schmalhofer O, Vincan E, Spaderna S, Brabletz T: A reciprocal repression between zeb1 and members of the mir-200 family promotes emt and invasion in cancer cells. EMBO Rep 2008, 9:582-589.
  • [153]Korpal M, Lee ES, Hu G, Kang Y: The mir-200 family inhibits epithelial-mesenchymal transition and cancer cell migration by direct targeting of e-cadherin transcriptional repressors zeb1 and zeb2. J Biol Chem 2008, 283:14910-14914.
  • [154]Park SM, Gaur AB, Lengyel E, Peter ME: The mir-200 family determines the epithelial phenotype of cancer cells by targeting the e-cadherin repressors zeb1 and zeb2. Genes Dev 2008, 22:894-907.
  • [155]Xiong M, Jiang L, Zhou Y, Qiu W, Fang L, Tan R, Wen P, Yang J: The mir-200 family regulates tgf-β1-induced renal tubular epithelial to mesenchymal transition through smad pathway by targeting zeb1 and zeb2 expression. Am J Physiol Renal Physiol 2012, 302:F369-F379.
  • [156]Wang B, Herman-Edelstein M, Koh P, Burns W, Jandeleit-Dahm K, Watson A, Saleem M, Goodall GJ, Twigg SM, Cooper ME, Kantharidis P: E-cadherin expression is regulated by mir-192/215 by a mechanism that is independent of the profibrotic effects of transforming growth factor-beta. Diabetes 2010, 59:1794-1802.
  • [157]Kato M, Zhang J, Wang M, Lanting L, Yuan H, Rossi JJ, Natarajan R: Microrna-192 in diabetic kidney glomeruli and its function in tgf-beta-induced collagen expression via inhibition of e-box repressors. Proc Natl Acad Sci U S A 2007, 104:3432-3437.
  • [158]Li JY, Yong TY, Michael MZ, Gleadle JM: Review: The role of micrornas in kidney disease. Nephrology (Carlton) 2010, 15:599-608.
  • [159]Wang G, Kwan BC, Lai FM, Choi PC, Chow KM, Li PK, Szeto CC: Intrarenal expression of mirnas in patients with hypertensive nephrosclerosis. Am J Hypertens 2010, 23:78-84.
  • [160]Raisz LG: Physiology and pathophysiology of bone remodeling. Clin Chem 1999, 45:1353-1358.
  • [161]Kapinas K, Delany AM: Microrna biogenesis and regulation of bone remodeling. Arthritis Res Ther 2011, 13:220. BioMed Central Full Text
  • [162]Saeed H, Abdallah BM, Ditzel N, Catala-Lehnen P, Qiu W, Amling M, Kassem M: Telomerase-deficient mice exhibit bone loss owing to defects in osteoblasts and increased osteoclastogenesis by inflammatory microenvironment. J Bone Miner Res 2011, 26:1494-1505.
  • [163]Kassem M, Marie PJ: Senescence-associated intrinsic mechanisms of osteoblast dysfunctions. Aging Cell 2011, 10:191-197.
  • [164]Laschober GT, Brunauer R, Jamnig A, Singh S, Hafen U, Fehrer C, Kloss F, Gassner R, Lepperdinger G: Age-specific changes of mesenchymal stem cells are paralleled by upregulation of cd106 expression as a response to an inflammatory environment. Rejuvenation Res 2011, 14:119-131.
  • [165]Cristofalo VJ, Allen RG, Pignolo RJ, Martin BG, Beck J: Relationship between donor age and the replicative lifespan of human cells in culture: A reevaluation. Proc Natl Acad Sci USA 1998, 95:10614-10619.
  • [166]Zhang JF, Fu WM, He ML, Wang H, Wang WM, Yu SC, Bian XW, Zhou J, Lin MC, Lu G, Poon WS, Kung HF: Mir-637 maintains the balance between adipocytes and osteoblasts by directly targeting osterix. Mol Biol Cell 22:3955-3961.
  • [167]Sengupta S, den Boon JA, Chen IH, Newton MA, Stanhope SA, Cheng YJ, Chen CJ, Hildesheim A, Sugden B, Ahlquist P: Microrna 29c is down-regulated in nasopharyngeal carcinomas, up-regulating mrnas encoding extracellular matrix proteins. Proc Natl Acad Sci U S A 2008, 105:5874-5878.
  • [168]Eskildsen T, Taipaleenmaki H, Stenvang J, Abdallah BM, Ditzel N, Nossent AY, Bak M, Kauppinen S, Kassem M: Microrna-138 regulates osteogenic differentiation of human stromal (mesenchymal) stem cells in vivo. Proc Natl Acad Sci U S A 108:6139-6144.
  • [169]Sugatani T, Hruska KA: Impaired micro-rna pathways diminish osteoclast differentiation and function. J Biol Chem 2009, 284:4667-4678.
  • [170]Li H, Xie H, Liu W, Hu R, Huang B, Tan YF, Xu K, Sheng ZF, Zhou HD, Wu XP, Luo XH: A novel microrna targeting hdac5 regulates osteoblast differentiation in mice and contributes to primary osteoporosis in humans. J Clin Invest 2009, 119:3666-3677.
  • [171]Stefek M, Karasu C: Eye lens in aging and diabetes: Effect of quercetin. Rejuvenation Res 2011, 14:525-534.
  • [172]Waters DL, Baumgartner RN, Garry PJ: Sarcopenia: Current perspectives. J Nutr Health Aging 2000, 4:133-139.
  • [173]Mouly V, Aamiri A, Bigot A, Cooper RN, Di Donna S, Furling D, Gidaro T, Jacquemin V, Mamchaoui K, Negroni E, Perie S, Renault V, Silva-Barbosa SD, Butler-Browne GS: The mitotic clock in skeletal muscle regeneration, disease and cell mediated gene therapy. Acta Physiol Scand 2005, 184:3-15.
  • [174]Bigot A, Jacquemin V, Debacq-Chainiaux F, Butler-Browne GS, Toussaint O, Furling D, Mouly V: Replicative aging down-regulates the myogenic regulatory factors in human myoblasts. Biol Cell 2008, 100:189-199.
  • [175]Bigot A, Klein AF, Gasnier E, Jacquemin V, Ravassard P, Butler-Browne G, Mouly V, Furling D: Large ctg repeats trigger p16-dependent premature senescence in myotonic dystrophy type 1 muscle precursor cells. Am J Pathol 2009, 174:1435-1442.
  • [176]Chen JF, Tao Y, Li J, Deng Z, Yan Z, Xiao X, Wang DZ: Microrna-1 and microrna-206 regulate skeletal muscle satellite cell proliferation and differentiation by repressing pax7. J Cell Biol 2010, 190:867-879.
  • [177]Conboy I, Rando T: Aging, stem cells and tissue regeneration: Lessons from muscle. Cell Cycle 2005, 4:407-410.
  • [178]Conboy I, Conboy M, Wagers A, Girma E, Weissman I, Rando T: Rejuvenation of aged progenitor cells by exposure to a young systemic environment. Nature 2005, 433:760-764.
  • [179]Junn E, Mouradian MM: Micrornas in neurodegenerative diseases and their therapeutic potential. Pharmacol Ther 2012, 133:142-150.
  文献评价指标  
  下载次数:29次 浏览次数:30次