期刊论文详细信息
Gut Pathogens
Gut Pharmacomicrobiomics: the tip of an iceberg of complex interactions between drugs and gut-associated microbes
Ramy K Aziz2  Mariam R Rizkallah1  Rama Saad1 
[1] The American University in Cairo, New Cairo, Egypt;Current address: Systems Biology Research Group, UC San Diego, 9500 Gilman Drive, La Jolla, CA, 92093-0412, USA
关键词: Pharmacomicrobiomics;    Pharmacodynamics;    Pharmacokinetics;    Metabonomics;    Metabolomics;    Microbiota;    Metagenome;    Liver enzymes;    Xenobitoics;    Human microbiome project;   
Others  :  821854
DOI  :  10.1186/1757-4749-4-16
 received in 2012-11-13, accepted in 2012-11-20,  发布年份 2012
PDF
【 摘 要 】

The influence of resident gut microbes on xenobiotic metabolism has been investigated at different levels throughout the past five decades. However, with the advance in sequencing and pyrotagging technologies, addressing the influence of microbes on xenobiotics had to evolve from assessing direct metabolic effects on toxins and botanicals by conventional culture-based techniques to elucidating the role of community composition on drugs metabolic profiles through DNA sequence-based phylogeny and metagenomics. Following the completion of the Human Genome Project, the rapid, substantial growth of the Human Microbiome Project (HMP) opens new horizons for studying how microbiome compositional and functional variations affect drug action, fate, and toxicity (pharmacomicrobiomics), notably in the human gut. The HMP continues to characterize the microbial communities associated with the human gut, determine whether there is a common gut microbiome profile shared among healthy humans, and investigate the effect of its alterations on health. Here, we offer a glimpse into the known effects of the gut microbiota on xenobiotic metabolism, with emphasis on cases where microbiome variations lead to different therapeutic outcomes. We discuss a few examples representing how the microbiome interacts with human metabolic enzymes in the liver and intestine. In addition, we attempt to envisage a roadmap for the future implications of the HMP on therapeutics and personalized medicine.

【 授权许可】

   
2012 Saad et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20140712085433446.pdf 608KB PDF download
Figure 2. 70KB Image download
Figure 1. 78KB Image download
【 图 表 】

Figure 1.

Figure 2.

【 参考文献 】
  • [1]Human Microbiome Project Consortium: Structure, function and diversity of the healthy human microbiome. Nature 2012, 486:207-214.
  • [2]Savage DC: Microbial ecology of the gastrointestinal tract. Annu Rev Microbiol 1977, 31:107-133.
  • [3]Peterson J, Garges S, Giovanni M, McInnes P, Wang L, Schloss JA, Bonazzi V, McEwen JE, Wetterstrand KA, Deal C, et al.: The NIH Human Microbiome Project. Genome Res 2009, 19:2317-2323.
  • [4]Hood L: Tackling the microbiome. Science 2012, 336:1209.
  • [5]Goldman P, Peppercorn MA, Goldin BR: Metabolism of drugs by microorganisms in the intestine. Am J Clin Nutr 1974, 27:1348-1355.
  • [6]Holt R: The bacterial degradation of chloramphenicol. Lancet 1967, 1:1259-1260.
  • [7]Spatz M, Smith DW, McDaniel EG, Laqueur GL: Role of intestinal microorganisms in determining cycasin toxicity. Proc Soc Exp Biol Med 1967, 124:691-697.
  • [8]Lindenbaum J, Rund DG, Butler VP Jr, Tse-Eng D, Saha JR: Inactivation of digoxin by the gut flora: reversal by antibiotic therapy. N Engl J Med 1981, 305:789-794.
  • [9]Mathan VI, Wiederman J, Dobkin JF, Lindenbaum J: Geographic differences in digoxin inactivation, a metabolic activity of the human anaerobic gut flora. Gut 1989, 30:971-977.
  • [10]Nicholson JK, Holmes E, Wilson ID: Gut microorganisms, mammalian metabolism and personalized health care. Nat Rev Microbiol 2005, 3:431-438.
  • [11]Sousa T, Paterson R, Moore V, Carlsson A, Abrahamsson B, Basit AW: The gastrointestinal microbiota as a site for the biotransformation of drugs. Int J Pharm 2008, 363:1-25.
  • [12]Johnson CH, Patterson AD, Idle JR, Gonzalez FJ: Xenobiotic metabolomics: major impact on the metabolome. Annu Rev Pharmacol Toxicol 2012, 52:37-56.
  • [13]Koch RL, Chrystal EJ, Beaulieu BB Jr, Goldman P: Acetamide–a metabolite of metronidazole formed by the intestinal flora. Biochem Pharmacol 1979, 28:3611-3615.
  • [14]Riesenfeld CS, Schloss PD, Handelsman J: Metagenomics: genomic analysis of microbial communities. Annu Rev Genet 2004, 38:525-552.
  • [15]Edwards RA, Rohwer F: Viral metagenomics. Nat Rev Microbiol 2005, 3:504-510.
  • [16]Haiser HJ, Turnbaugh PJ: Developing a metagenomic view of xenobiotic metabolism. Pharmacol Res 2012.
  • [17]Rizkallah MR, Saad R, Aziz RK: The Human Microbiome Project, personalized medicine and the birth of pharmacomicrobiomics. Curr Pharmacogenomics Person Med 2010, 8:182-193.
  • [18]Aziz RK: Rethinking pharmacogenomics in an ecosystem: drug-microbiome interactions, pharmacomicrobiomics, and personalized medicine for the human supraorganism. Curr Pharmacogenomics Person Med 2012, 10:258-261.
  • [19]Aziz RK, Saad R, Rizkallah MR: PharmacoMicrobiomics or how bugs modulate drugs: an educational initiative to explore the effects of human microbiome on drugs. BMC Bioinforma 2011, 12:A10.
  • [20]Wilson ID: Drugs, bugs, and personalized medicine: pharmacometabonomics enters the ring. Proc Natl Acad Sci USA 2009, 106:14187-14188.
  • [21]Relman DA: New technologies, human-microbe interactions, and the search for previously unrecognized pathogens. J Infect Dis 2002, 186(Suppl 2):S254-S258.
  • [22]Shanahan F: The host-microbe interface within the gut. Best Pract Res Clin Gastroenterol 2002, 16:915-931.
  • [23]Gilbert JA, Meyer F, Antonopoulos D, Balaji P, Brown CT, Desai N, Eisen JA, Evers D, Field D, Feng W, et al.: Meeting report: the terabase metagenomics workshop and the vision of an Earth microbiome project. Stand Genomic Sci 2010, 3:243-248.
  • [24]Egert M, de Graaf AA, Smidt H, de Vos WM, Venema K: Beyond diversity: functional microbiomics of the human colon. Trends Microbiol 2006, 14:86-91.
  • [25]Persidis A: The business of pharmacogenomics. Nat Biotechnol 1998, 16:209-210.
  • [26]Nicholson JK, Wilson ID: Opinion: understanding 'global' systems biology: metabonomics and the continuum of metabolism. Nat Rev Drug Discov 2003, 2:668-676.
  • [27]Ibrahim M, Anishetty S: A meta-metabolome network of carbohydrate metabolism: Interactions between gut microbiota and host. Biochem Biophys Res Commun 2012, 428(2):278-284.
  • [28]Meinl W, Sczesny S, Brigelius-Flohe R, Blaut M, Glatt H: Impact of gut microbiota on intestinal and hepatic levels of phase 2 xenobiotic-metabolizing enzymes in the rat. Drug Metab Dispos 2009, 37:1179-1186.
  • [29]Overvik E, Lindeskog P, Midtvedt T, Gustafsson JA: Mutagen excretion and cytochrome P-450-dependent activity in germfree and conventional rats fed a diet containing fried meat. Food Chem Toxicol 1990, 28:253-261.
  • [30]Sugimura T, Nagao M, Wakabayashi K: Carcinogenicity of food mutagens. Environ Health Perspect 1996, 104(Suppl 3):429-433.
  • [31]Rowland IR: Interactions of the gut microflora and the host in toxicology. Toxicol Pathol 1988, 16:147-153.
  • [32]Lhoste EF, Ouriet V, Bruel S, Flinois JP, Brezillon C, Magdalou J, Cheze C, Nugon-Baudon L: The human colonic microflora influences the alterations of xenobiotic-metabolizing enzymes by catechins in male F344 rats. Food Chem Toxicol 2003, 41:695-702.
  • [33]Axelson M, Sjovall J: Formation of catechol estrogens by intestinal bacterial demethylation of 2-methoxyestrone. Biochim Biophys Acta 1983, 751:162-165.
  • [34]Gonthier MP, Verny MA, Besson C, Remesy C, Scalbert A: Chlorogenic acid bioavailability largely depends on its metabolism by the gut microflora in rats. J Nutr 2003, 133:1853-1859.
  • [35]Gavaghan CL, Nicholson JK, Connor SC, Wilson ID, Wright B, Holmes E: Directly coupled high-performance liquid chromatography and nuclear magnetic resonance spectroscopic with chemometric studies on metabolic variation in Sprague–Dawley rats. Anal Biochem 2001, 291:245-252.
  • [36]Bowey E, Adlercreutz H, Rowland I: Metabolism of isoflavones and lignans by the gut microflora: a study in germ-free and human flora associated rats. Food Chem Toxicol 2003, 41:631-636.
  • [37]Delgado S, Ruas-Madiedo P, Suarez A, Mayo B: Interindividual differences in microbial counts and biochemical-associated variables in the feces of healthy Spanish adults. Dig Dis Sci 2006, 51:737-743.
  • [38]Akao T, Kawabata K, Yanagisawa E, Ishihara K, Mizuhara Y, Wakui Y, Sakashita Y, Kobashi K: Baicalin, the predominant flavone glucuronide of scutellariae radix, is absorbed from the rat gastrointestinal tract as the aglycone and restored to its original form. J Pharm Pharmacol 2000, 52:1563-1568.
  • [39]Selma MV, Espin JC, Tomas-Barberan FA: Interaction between phenolics and gut microbiota: role in human health. J Agric Food Chem 2009, 57:6485-6501.
  • [40]Bolton EE, Wang Y, Thiessen PA, Bryant SH: PubChem: integrated platform of small molecules and biological activities. Annu Rep Comput Chem 2008, 4:217-241.
  • [41]Proctor LM: The Human Microbiome Project in 2011 and beyond. Cell Host Microbe 2011, 10:287-291.
  • [42]Qin J, Li R, Raes J, Arumugam M, Burgdorf KS, Manichanh C, Nielsen T, Pons N, Levenez F, Yamada T, et al.: A human gut microbial gene catalogue established by metagenomic sequencing. Nature 2010, 464:59-65.
  • [43]Clayton TA, Baker D, Lindon JC, Everett JR, Nicholson JK: Pharmacometabonomic identification of a significant host-microbiome metabolic interaction affecting human drug metabolism. Proc Natl Acad Sci USA 2009, 106:14728-14733.
  • [44]Vermes A, Kuijper EJ, Guchelaar HJ, Dankert J: An in vitro study on the active conversion of flucytosine to fluorouracil by microorganisms in the human intestinal microflora. Chemotherapy 2003, 49:17-23.
  • [45]Grundmann O: The gut microbiome and pre-systemic metabolism: current state and evolving research. J Drug Metab Toxicol 2010, 1:105.
  • [46]Steffens LS, Nicholson S, Paul LV, Nord CE, Patrick S, Abratt VR: Bacteroides fragilis RecA protein overexpression causes resistance to metronidazole. Res Microbiol 2010, 161:346-354.
  • [47]Strong HA, Renwick AG, George CF, Liu YF, Hill MJ: The reduction of sulphinpyrazone and sulindac by intestinal bacteria. Xenobiotica 1987, 17:685-696.
  • [48]Strong HA, Warner NJ, Renwick AG, George CF: Sulindac metabolism: the importance of an intact colon. Clin Pharmacol Ther 1985, 38:387-393.
  • [49]Ashida N, Ijichi K, Watanabe Y, Machida H: Metabolism of 5'-ether prodrugs of 1-beta-D-arabinofuranosyl-E-5-(2-bromovinyl)uracil in rats. Biochem Pharmacol 1993, 46:2201-2207.
  • [50]Nakayama H, Kinouchi T, Kataoka K, Akimoto S, Matsuda Y, Ohnishi Y: Intestinal anaerobic bacteria hydrolyse sorivudine, producing the high blood concentration of 5-(E)-(2-bromovinyl)uracil that increases the level and toxicity of 5-fluorouracil. Pharmacogenetics 1997, 7:35-43.
  • [51]Kitamura S, Sugihara K, Kuwasako M, Tatsumi K: The role of mammalian intestinal bacteria in the reductive metabolism of zonisamide. J Pharm Pharmacol 1997, 49:253-256.
  • [52]Overbeek R, Begley T, Butler RM, Choudhuri JV, Chuang HY, Cohoon M, de Crecy-Lagard V, Diaz N, Disz T, Edwards R, et al.: The subsystems approach to genome annotation and its use in the project to annotate 1000 genomes. Nucleic Acids Res 2005, 33:5691-5702.
  • [53]Gygi SP, Rochon Y, Franza BR, Aebersold R: Correlation between protein and mRNA abundance in yeast. Mol Cell Biol 1999, 19:1720-1730.
  • [54]Gry M, Rimini R, Stromberg S, Asplund A, Ponten F, Uhlen M, Nilsson P: Correlations between RNA and protein expression profiles in 23 human cell lines. BMC Genomics 2009, 10:365. BioMed Central Full Text
  • [55]Zengler K, Palsson BO: A road map for the development of community systems (CoSy) biology. Nat Rev Microbiol 2012, 10:366-372.
  • [56]Thiele I, Heinken A, Fleming RM: A systems biology approach to studying the role of microbes in human health. Curr Opin Biotechnol 2012.
  • [57]Doherty MM, Pang KS: First-pass effect: significance of the intestine for absorption and metabolism. Drug Chem Toxicol 1997, 20:329-344.
  • [58]Howard HJ, Horaitis O, Cotton RG, Vihinen M, Dalgleish R, Robinson P, Brookes AJ, Axton M, Hoffmann R, Tuffery-Giraud S: The Human Variome Project (HVP) 2009 Forum "Towards Establishing Standards". Hum Mutat 2010, 31:366-367.
  • [59]International HapMap Consortium: The International HapMap Project. Nature 2003, 426:789-796.
  • [60]Meyer F, Paarmann D, D'Souza M, Olson R, Glass EM, Kubal M, Paczian T, Rodriguez A, Stevens R, Wilke A, et al.: The metagenomics RAST server - a public resource for the automatic phylogenetic and functional analysis of metagenomes. BMC Bioinforma 2008, 9:386. BioMed Central Full Text
  • [61]Aziz RK, Devoid S, Disz T, Edwards RA, Henry CS, Olsen GJ, Olson R, Overbeek R, Parrello B, Pusch GD, et al.: SEED Servers: high-performance access to the SEED genomes, annotations, and metabolic models. PLoS One 2012, 7:e48053.
  • [62]Owen RP, Altman RB, Klein TE: PharmGKB and the International Warfarin Pharmacogenetics Consortium: the changing role for pharmacogenomic databases and single-drug pharmacogenetics. Hum Mutat 2008, 29:456-460.
  • [63]Gamazon ER, Duan S, Zhang W, Huang RS, Kistner EO, Dolan ME, Cox NJ: PACdb: a database for cell-based pharmacogenomics. Pharmacogenet Genomics 2010, 20:269-273.
  • [64]Davis AP, Murphy CG, Rosenstein MC, Wiegers TC, Mattingly CJ: The Comparative Toxicogenomics Database facilitates identification and understanding of chemical-gene-disease associations: arsenic as a case study. BMC Med Genomics 2008, 1:48. BioMed Central Full Text
  • [65]Rizkallah MR SG-E, Saad R, Aziz RK: The pharmacomicrobiomics portal: a database for drug-microbiome interactions. Curr Pharmacogenomics Person Med 2012, 10:195-203.
  • [66]Kanehisa M, Goto S: KEGG: Kyoto encyclopedia of genes and genomes. Nucleic Acids Res 2000, 28:27-30.
  • [67]Henry CS, DeJongh M, Best AA, Frybarger PM, Linsay B, Stevens RL: High-throughput generation, optimization and analysis of genome-scale metabolic models. Nat Biotechnol 2010, 28:977-982.
  • [68]Scheer M, Grote A, Chang A, Schomburg I, Munaretto C, Rother M, Sohngen C, Stelzer M, Thiele J, Schomburg D: BRENDA, the enzyme information system in 2011. Nucleic Acids Res 2011, 39:D670-D676.
  • [69]Ring HZ, Kwok PY, Cotton RG: Human Variome Project: an international collaboration to catalogue human genetic variation. Pharmacogenomics 2006, 7:969-972.
  • [70]Ozdemir V, Rosenblatt DS, Warnich L, Srivastava S, Tadmouri GO, Aziz RK, Reddy PJ, Manamperi A, Dove ES, Joly Y, et al.: Towards an ecology of collective innovation: Human Variome Project (HVP), Rare Disease Consortium for Autosomal Loci (RaDiCAL) and Data-Enabled Life Sciences Alliance (DELSA). Curr Pharmacogenomics Person Med 2011, 9:243-251.
  • [71]Pagani I, Liolios K, Jansson J, Chen IM, Smirnova T, Nosrat B, Markowitz VM, Kyrpides NC: The Genomes OnLine Database (GOLD) v.4: status of genomic and metagenomic projects and their associated metadata. Nucleic Acids Res 2012, 40:571-579.
  • [72]Heinken A, Sahoo S, Fleming RM, Thiele I: Systems-level characterization of a host-microbe metabolic symbiosis in the mammalian gut. Gut Microbes 2013, 4:1-13.
  • [73]Hlavaty T, Ferrante M, Henckaerts L, Pierik M, Rutgeerts P, Vermeire S: Predictive model for the outcome of infliximab therapy in Crohn's disease based on apoptotic pharmacogenetic index and clinical predictors. Inflamm Bowel Dis 2007, 13:372-379.
  文献评价指标  
  下载次数:15次 浏览次数:11次