期刊论文详细信息
Journal of Experimental & Clinical Cancer Research
Identification and validation of potential prognostic lncRNA biomarkers for predicting survival in patients with multiple myeloma
Jie Sun1  Haixiu Yang1  Hongbo Shi1  Lei Yang1  Liang Cheng1  Zhenzhen Wang1  Hengqiang Zhao1  Meng Zhou1 
[1] College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150081, PR China
关键词: Overall survival;    Multiple myeloma;    Long non-coding RNAs;    Expression profile;    Biomarkers;   
Others  :  1226254
DOI  :  10.1186/s13046-015-0219-5
 received in 2015-07-15, accepted in 2015-09-04,  发布年份 2015
PDF
【 摘 要 】

Background

Dysregulated long non-coding RNAs (lncRNAs) have been found to have oncogenic and/or tumor suppressive roles in the development and progression of cancer, implying their potentials as novel independent biomarkers for cancer diagnosis and prognosis. However, the prognostic significance of expression profile-based lncRNA signature for outcome prediction in patients with multiple myeloma (MM) has not yet been investigated.

Methods

LncRNA expression profiles of a large cohort of patients with MM were obtained and analyzed by repurposing the publically available microarray data. An lncRNA-focus risk score model was developed from the training dataset, and then validated in the testing and another two independent external datasets. The time-dependent receiver operating characteristic (ROC) curve was used to evaluate the prognostic performance for survival prediction. The biological function of prognostic lncRNAs was predicted using bioinformatics analysis.

Results

Four lncRNAs were identified to be significantly associated with overall survival (OS) of patients with MM in the training dataset, and were combined to develop a four-lncRNA prognostic signature to stratify patients into high-risk and low-risk groups. Patients of training dataset in the high-risk group exhibited shorter OS than those in the low-risk group (HR = 2.718, 95 % CI = 1.937-3.815, p <0.001). The similar prognostic values of four-lncRNA signature were observed in the testing dataset, entire GSE24080 dataset and another two independent external datasets. Multivariate Cox regression and stratified analysis showed that the prognostic power of four-lncRNA signature was independent of clinical features, including serum beta 2-microglobulin (Sβ2M), serum albumin (ALB) and lactate dehydrogenase (LDH). ROC analysis also demonstrated the better performance for predicting 3-year OS. Functional enrichment analysis suggested that these four lncRNAs may be involved in known genetic and epigenetic events linked to MM.

Conclusions

Our results demonstrated potential application of lncRNAs as novel independent biomarkers for diagnosis and prognosis in MM. These lncRNA biomarkers may contribute to the understanding of underlying molecular basis of MM.

【 授权许可】

   
2015 Zhou et al.

【 预 览 】
附件列表
Files Size Format View
20150405064259737.pdf 2206KB PDF download
Fig. 6. 58KB Image download
Fig. 5. 95KB Image download
Fig. 4. 88KB Image download
Fig. 3. 109KB Image download
Fig. 2. 56KB Image download
Fig. 1. 52KB Image download
【 图 表 】

Fig. 1.

Fig. 2.

Fig. 3.

Fig. 4.

Fig. 5.

Fig. 6.

【 参考文献 】
  • [1]Palumbo A, Anderson K: Multiple myeloma. N Enql J Med 2011, 364(11):1046-60.
  • [2]Decaux O, Lode L, Magrangeas F, Charbonnel C, Gouraud W, Jezequel P, et al.: Prediction of survival in multiple myeloma based on gene expression profiles reveals cell cycle and chromosomal instability signatures in high-risk patients and hyperdiploid signatures in low-risk patients: a study of the Intergroupe Francophone du Myelome. J Clin Oncol 2008, 26(29):4798-805.
  • [3]Consortium EP, Birney E, Stamatoyannopoulos JA, Dutta A, Guigo R, Gingeras TR, et al.: Identification and analysis of functional elements in 1% of the human genome by the ENCODE pilot project. Nature 2007, 447(7146):799-816.
  • [4]International Human Genome Sequencing C: Finishing the euchromatic sequence of the human genome Nature 2004, 431(7011):931-45.
  • [5]Mercer TR, Dinger ME, Mattick JS: Long non-coding RNAs: insights into functions. Nat Rev Genet 2009, 10(3):155-9.
  • [6]Ponting CP, Oliver PL, Reik W: Evolution and functions of long noncoding RNAs. Cell 2009, 136(4):629-41.
  • [7]Kornienko AE, Guenzl PM, Barlow DP, Pauler FM: Gene regulation by the act of long non-coding RNA transcription. BMC Biol 2013, 11:59. BioMed Central Full Text
  • [8]Fatica A, Bozzoni I: Long non-coding RNAs: new players in cell differentiation and development. Nat Rev Genet 2014, 15(1):7-21.
  • [9]Geisler S, Coller J: RNA in unexpected places: long non-coding RNA functions in diverse cellular contexts. Nat Rev Mol Cell Biol 2013, 14(11):699-712.
  • [10]Tsai MC, Spitale RC, Chang HY: Long intergenic noncoding RNAs: new links in cancer progression. Cancer Res 2011, 71(1):3-7.
  • [11]Uchida S, Dimmeler S: Long noncoding RNAs in cardiovascular diseases. Circ Res 2015, 116(4):737-50.
  • [12]Kumar V, Westra HJ, Karjalainen J, Zhernakova DV, Esko T, Hrdlickova B, et al.: Human disease-associated genetic variation impacts large intergenic non-coding RNA expression. PLoS Genet 2013., 9(1) Article ID e1003201
  • [13]Ji P, Diederichs S, Wang W, Boing S, Metzger R, Schneider PM, et al.: MALAT-1, a novel noncoding RNA, and thymosin beta4 predict metastasis and survival in early-stage non-small cell lung cancer. Oncogene 2003, 22(39):8031-41.
  • [14]Gupta RA, Shah N, Wang KC, Kim J, Horlings HM, Wong DJ, et al.: Long non-coding RNA HOTAIR reprograms chromatin state to promote cancer metastasis. Nature 2010, 464(7291):1071-6.
  • [15]Hauptman N, Glavac D: Long non-coding RNA in cancer. Int J Mol Sci 2013, 14(3):4655-69.
  • [16]Zhou Y, Zhang X, Klibanski A: MEG3 noncoding RNA: a tumor suppressor. J Mol Endocrinol 2012, 48(3):R45-53.
  • [17]Mourtada-Maarabouni M, Pickard MR, Hedge VL, Farzaneh F, Williams GT: GAS5, a non-protein-coding RNA, controls apoptosis and is downregulated in breast cancer. Oncogene 2009, 28(2):195-208.
  • [18]Huarte M, Guttman M, Feldser D, Garber M, Koziol MJ, Kenzelmann-Broz D, et al.: A large intergenic noncoding RNA induced by p53 mediates global gene repression in the p53 response. Cell 2010, 142(3):409-19.
  • [19]Cheetham SW, Gruhl F, Mattick JS, Dinger ME: Long noncoding RNAs and the genetics of cancer. Br J Cancer 2013, 108(12):2419-25.
  • [20]Cabili MN, Trapnell C, Goff L, Koziol M, Tazon-Vega B, Regev A, et al.: Integrative annotation of human large intergenic noncoding RNAs reveals global properties and specific subclasses. Genes Dev 2011, 25(18):1915-27.
  • [21]Zhang XQ, Sun S, Lam KF, Kiang KM, Pu JK, Ho AS, et al.: A long non-coding RNA signature in glioblastoma multiforme predicts survival. Neurobiol Dis 2013, 58:123-31.
  • [22]Meng J, Li P, Zhang Q, Yang Z, Fu S: A four-long non-coding RNA signature in predicting breast cancer survival. J Exp Clin Cancer Res 2014, 33:84. BioMed Central Full Text
  • [23]Li J, Chen Z, Tian L, Zhou C, He MY, Gao Y, et al.: LncRNA profile study reveals a three-lncRNA signature associated with the survival of patients with oesophageal squamous cell carcinoma. Gut 2014, 63(11):1700-10.
  • [24]Hu Y, Chen HY, Yu CY, Xu J, Wang JL, Qian J, et al.: A long non-coding RNA signature to improve prognosis prediction of colorectal cancer. Oncotarget 2014, 5(8):2230-42.
  • [25]Zhou M, Guo M, He D, Wang X, Cui Y, Yang H, et al.: A potential signature of eight long non-coding RNAs predicts survival in patients with non-small cell lung cancer. J Transl Med 2015, 13:231. BioMed Central Full Text
  • [26]Zhuang W, Ge X, Yang S, Huang M, Zhuang W, Chen P, et al.: Upregulation of lncRNA MEG3 Promotes Osteogenic Differentiation of Mesenchymal Stem Cells From Multiple Myeloma Patients By Targeting BMP4 Transcription. Stem Cells 2015, 33(6):1985-97.
  • [27]Cho SF, Chang YC, Chang CS, Lin SF, Liu YC, Hsiao HH, et al.: MALAT1 long non-coding RNA is overexpressed in multiple myeloma and may serve as a marker to predict disease progression. BMC Cancer 2014, 14:809. BioMed Central Full Text
  • [28]Shi L, Campbell G, Jones WD, Campagne F, Wen Z, Walker SJ, et al.: The MicroArray Quality Control (MAQC)-II study of common practices for the development and validation of microarray-based predictive models. Nat Biotechnol 2010, 28(8):827-38.
  • [29]Heuck CJ, Qu P, van Rhee F, Waheed S, Usmani SZ, Epstein J, et al.: Five gene probes carry most of the discriminatory power of the 70-gene risk model in multiple myeloma. Leukemia 2014, 28(12):2410-3.
  • [30]Mulligan G, Mitsiades C, Bryant B, Zhan F, Chng WJ, Roels S, et al.: Gene expression profiling and correlation with outcome in clinical trials of the proteasome inhibitor bortezomib. Blood 2007, 109(8):3177-88.
  • [31]Du Z, Fei T, Verhaak RG, Su Z, Zhang Y, Brown M, et al.: Integrative genomic analyses reveal clinically relevant long noncoding RNAs in human cancer. Nat Struct Mol Biol 2013, 20(7):908-13.
  • [32]Jiang H, Wong WH: SeqMap: mapping massive amount of oligonucleotides to the genome. Bioinformatics 2008, 24(20):2395-6.
  • [33]Harrow J, Frankish A, Gonzalez JM, Tapanari E, Diekhans M, Kokocinski F, et al.: GENCODE: the reference human genome annotation for The ENCODE Project. Genome Res 2012, 22(9):1760-74.
  • [34]da Huang W, Sherman BT, Lempicki RA: Bioinformatics enrichment tools: paths toward the comprehensive functional analysis of large gene lists. Nucleic Acids Res 2009, 37(1):1-13.
  • [35]da Huang W, Sherman BT, Lempicki RA: Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc 2009, 4(1):44-57.
  • [36]Shaughnessy JD Jr, Zhan F, Burington BE, Huang Y, Colla S, Hanamura I, et al.: A validated gene expression model of high-risk multiple myeloma is defined by deregulated expression of genes mapping to chromosome 1. Blood 2007, 109(6):2276-84.
  • [37]An O, Pendino V, D’Antonio M, Ratti E, Gentilini M, Ciccarelli FD. NCG 4.0: the network of cancer genes in the era of massive mutational screenings of cancer genomes. Database (Oxford). 2014;2014:bau015. doi:10.1093/database/bau015.
  • [38]Bezieau S, Devilder MC, Avet-Loiseau H, Mellerin MP, Puthier D, Pennarun E, et al.: High incidence of N and K-Ras activating mutations in multiple myeloma and primary plasma cell leukemia at diagnosis. Hum Mutat 2001, 18(3):212-24.
  • [39]Prideaux SM, Conway O’Brien E, Chevassut TJ: The genetic architecture of multiple myeloma. Adv Hematol 2014, 2014:864058.
  • [40]Morgan GJ, Walker BA, Davies FE: The genetic architecture of multiple myeloma. Nat Rev Cancer 2012, 12(5):335-48.
  • [41]Greipp PR, San Miguel J, Durie BG, Crowley JJ, Barlogie B, Blade J, et al.: International staging system for multiple myeloma. J Clin Oncol 2005, 23(15):3412-20.
  • [42]Shaughnessy J, Jacobson J, Sawyer J, McCoy J, Fassas A, Zhan F, et al.: Continuous absence of metaphase-defined cytogenetic abnormalities, especially of chromosome 13 and hypodiploidy, ensures long-term survival in multiple myeloma treated with Total Therapy I: interpretation in the context of global gene expression. Blood 2003, 101(10):3849-56.
  • [43]Fonseca R, Blood E, Rue M, Harrington D, Oken MM, Kyle RA, et al.: Clinical and biologic implications of recurrent genomic aberrations in myeloma. Blood 2003, 101(11):4569-75.
  • [44]Baxter C: Molecular signatures. Nat Rev Genet 2003, 4:84.
  • [45]Sotiriou C, Piccart MJ: Taking gene-expression profiling to the clinic: when will molecular signatures become relevant to patient care? Nat Rev Cancer 2007, 7:545-53.
  • [46]Kuiper R, Broyl A, de Knegt Y, van Vliet MH, van Beers EH, van der Holt B, et al.: A gene expression signature for high-risk multiple myeloma. Leukemia 2012, 26(11):2406-13.
  文献评价指标  
  下载次数:19次 浏览次数:5次