Investigative Genetics | |
Long-term RNA persistence in postmortem contexts | |
M Thomas P Gilbert2  Nienke L van Doorn1  Marie-Louise Kampmann2  Sarah L Fordyce2  | |
[1] BioArCh, Department of Archaeology, Biology and Chemistry, S-Block, University of York, York, YO10 5YW, UK;Centre for GeoGenetics, Natural History Museum of Denmark, Øster Voldgade 5-7, 1350, Copenhagen K, Denmark | |
关键词: Instability; Paleogenetics; Forensic; Postmortem; Ribonucleic acid (RNA); | |
Others : 801612 DOI : 10.1186/2041-2223-4-7 |
|
received in 2012-11-19, accepted in 2013-04-10, 发布年份 2013 | |
![]() |
【 摘 要 】
Ribonucleic acids (RNA) are generally considered fragile molecules that are readily degraded. However, there is growing documentation of long-term (from days to centuries) RNA persistence in a variety of contexts and tissue types, and as such a number of academic disciplines are beginning to exploit degraded RNA. While the reasons for its survival are not fully understood, there are several plausible mechanisms that would safeguard this molecule against degradation. However, after examining the literature available on the postmortem instability and decay mechanisms of RNA, it has become clear that limited experimental studies and no reviews offer an overview of these mechanisms. Hence in this review we outline molecular reasons for RNA surviving long-term postmortem, and provide specific examples of RNA survival in forensic, archival and archaeological contexts. A better understanding of the mechanisms of RNA decay will be crucial for developing expectations on its long-term survival.
【 授权许可】
2013 Fordyce et al.; licensee BioMed Central Ltd.
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
20140708011504204.pdf | 279KB | ![]() |
|
Figure 1. | 46KB | Image | ![]() |
【 图 表 】
Figure 1.
【 参考文献 】
- [1]Crick FHS: The central dogma of molecular biology. Nature 1970, 227:561-563.
- [2]Lindahl T: Instability and decay of the primary structure of DNA. Nature 1993, 362:709-715.
- [3]Allen FW: The biochemistry of the nucleic acids, purines, and pyrimidines. Annu Rev Biochem 1941, 10:221-244.
- [4]Hofreiter M, Jaenicke V, Serre D, Haeseler AA, Pääbo S: DNA sequences from multiple amplifications reveal artifacts induced by cytosine deamination in ancient DNA. Nucleic Acids Res 2001, 29:4793-4799.
- [5]Brown DM, Todd AR: Nucleotides. Part X. Some observations on the structure and chemical behaviour of the nucleic acids. J Chem Soc 1952, 0:52-58.
- [6]Lindahl T: The Croonian Lecture, 1996: Endogenous damage to DNA. Phil Trans R Soc Lond B 1996, 351:1529-1538.
- [7]Lindahl T: Heat inactivation of transfer ribonucleic acids. J Biol Chem 1967, 242:1970-1973.
- [8]Lindahl T, Nyberg B: Rate of depuriniation of native deoxyribonucleic acid. Biochemistry 1972, 11:3610.
- [9]Kotchetkov NK, Budowsky EI: Organic Chem Nucleic Acids. New York: Plenum Press; 1972.
- [10]Hansen AJ, Mitchell DL, Wiuf C, Paniker L, Brand TB, Binladen J, Gilichinsky DA, Rønn R, Willerslev E: Crosslinks rather than strand breaks determine access to ancient DNA sequences from frozen sediments. Genetics 2006, 173:1175-1179.
- [11]Pääbo S, Wilson AC: Miocene DNA sequences – a dream come true? Cur Biol 1991, 1:45-46.
- [12]Arroyo JD, Chevillet JR, Kroh EM, Ruf IK, Pritchard CC, Gibson DF, Mitchell PS, Bennett CF, Pogosova-Agadjanyan EL, Stirewalt DL, Tait JF, Tewari M: Argonaute2 complexes carry a population of circulating microRNAs independent of vesicles in human plasma. Proc Natl Acad Sci USA 2011, 108:5003-5008.
- [13]Park NJ, Li Y, Yu T, Brinkman BM, Wong DT: Characterization of RNA in saliva. Clin Chem 2006, 52:988-994.
- [14]Bauer M, Kraus A, Patzelt D: Detection of epithelial cells in dried blood stains by reverse transcriptase-polymerase chain reaction. J Forensic Sci 1999, 44:1232-1236.
- [15]Johnson SA, Morgan DG, Finch CE: Extensive postmortem stability of RNA from rat and human brain. J Neurosci Res 1986, 16:267-280.
- [16]Bauer M: RNA is forensic science. Forensic Sci Int Genet 2007, 1:69-74.
- [17]Bauer M, Patzelt D: A method for simultaneous RNA and DNA isolation from dried blood and semen stains. Forensic Sci Int 2003, 136:76-78.
- [18]Haas C, Hanson E, Anjos MJ, Bär W, Banemann R, Berti A, Borges E, Bouakaze C, Carracedo A, Carvalho M, Castella V, Choma A, De Cock G, Dötsch M, Hoff-Olsen P, Johansen P, Kohlmeier F, Lindenbergh PA, Ludes B, Maroñas O, Moore D, Morerod ML, Morling N, Niederstätter H, Noel F, Parson W, Patel G, Popielarz C, Salata E, Schneider PM, Sijen T, Sviežena B, Turanská M, Zatkalíková L, Ballantyne J: RNA/DNA co-analysis from blood stains–results of a second collaborative EDNAP exercise. Forensic Sci Int Genet 2012, 6:70-80.
- [19]Marchuk L, Sciore P, Reno C, Frank CB, Hart DA: Postmortem stability of total RNA isolated from rabbit ligament, tendon and cartilage. Biochimica et Biophysica Acta 1998, 1379:171-177.
- [20]Inoue H, Kimura A, Tuji T: Degradation profile of mRNA in a dead rat body: basic semi-quantification study. Forensic Sci Int 2002, 130:127-132.
- [21]Bahar B, Monahan FJ, Moloney AP, Schmidt O, MacHugh DE, Sweeney T: Long-term stability of RNA in post-mortem bovine skeletal muscle, liver and subcutaneous adipose tissues. BioMed Central Mol Biol 2007, 8:108.
- [22]Bauer M, Polzin S, Patzelt D: Quantification of RNA degradation by semi-quantitative duplex and competitive RT-PCR: a possible indicator of the age of bloodstains? Forensic Sci Int 2003, 138:94-103.
- [23]Zubakov D, Kokshoorn M, Kloosterman A, Kayser M: New markers for old stains: stable mRNA markers for blood and saliva identification from up to 16-year-old stains. Int J Legal Med 2008, 123:71-74.
- [24]Kuliwaba JS, Fazzalari NL, Findlay DM: Stability of RNA isolated from human trabecular bone at post-mortem and surgery. Biochimica et Biophysisca Acta 2005, 1740:1-11.
- [25]van Doorn NL, Wilson AS, Willerslev E, Gilbert MTP: Bone marrow and bone as a source of postmortem RNA. J Forensic Sci 2011, 56:720-725.
- [26]King A, Flinter FA, Green PM: Hair roots as the ideal source of mRNA for genetic testing. J Med Genet 2001, 38:e20.
- [27]Yasojima K, McGeer EG, McGeer PL: High stability of mRNAs postmortem and protocols for their assessment by RT-PCR. Brain Research (Protocols) 2001, 8:212-218.
- [28]Anderson S, Howard B, Hobbs GR, Bishop CP: A method for determining the age of a bloodstain. Forensic Sci Int 2005, 148:37-45.
- [29]Anderson S, Hobbs GR, Bishop CP: Multivariate analysis for estimating the age of a bloodstain. J Forensic Sci 2010, 56:186-193.
- [30]Ohshima T: Forensic wound examination. Forensic Sci Int 2010, 113:153-164.
- [31]Bauer M, Gramlich I, Polzin S, Patzelt D: Quantification of mRNA degradation as possible indicator of postmortem interval – a pilot study. Legal Med 2003, 5:220-227.
- [32]Tomita Y, Nihira M, Ohno Y, Sato S: Ultrastructural changes during in situ early postmortem autolysis in kidney, pancreas, liver, heart and skeletal muscle of rats. Legal Med 2004, 6:25-31.
- [33]Hanson EK, Lubenow H, Ballantyne J: Identification of forensically relevant body fluids using a panel of differentially expressed microRNAs. Ana Biochem 2009, 387:303-314.
- [34]Nussbaumer C, Gharehbaghi-Schnell E, Korschineck I: Messenger RNA profiling: a novel method for body fluid identification by real-time PCR. Forensic Sci Int 2006, 157:181-186.
- [35]Visser M, Zubakov D, Ballantyne KN, Kayser M: mRNA-based skin identification for forensic applications. Int J Legal Med 2011, 125:253-263.
- [36]Hanson E, Haas C, Jucker R, Ballantyne J: Specific and sensitive mRNA biomarkers for the identification of skin in ‘touch DNA’ evidence. J Forensic Sci Int Genet 2012, 6:e141.
- [37]Hanson E, Ballantyne J: Highly specific mRNA biomarkers for the identification of vaginal secretions in sexual assault investigations. J Sci Justice 2013, 53:14-22.
- [38]Zubakov D, Boersma AWM, Choi Y, van Kuijk PR, Wiemer EA, Kayser M: MicroRNA markers for forensic body fluid identification obtained from microarray screening and quantitative RT-PCR confirmation. Int J Leg Med 2010, 124:217-226.
- [39]Catts VS, Catts SV, Fernandez HR, Taylor JM, Coulson EJ, Lutze-Mann LH: A microarray study of post-mortem mRAN degradation in mouse brain tissue. Mol Brain Res 2005, 138:164-177.
- [40]Krafft AE, Duncan BW, Bijwaard KE, Taubenberger JK, Lichy JH: Optimization of the isolation and amplification of RNA from formalin-fixed, paraffin-embedded tissue: The Armed Forces Institute of Pathology experience and literature review. Mol Diagn 1997, 2:217-230.
- [41]Worobey M, Gemmel M, Teuwen DE, Haselkorn T, Kunstman K, Bunce M, Muyembe JJ, Kabongo JM, Kalengayi RM, Van Marck E, Gilbert MTP, Wolinsky SM: Direct evidence of extensive diversity of HIV-1 in Kinshasa by 1960. Nature 2008, 455:661-665.
- [42]Taubenberger JK, Reid AH, Krafft AE, Bijwaard KE, Fanning TG: Initial genetic characterization of the 1918 “Spanish” influenza virus. Science 1997, 275:1793-1796.
- [43]Furusato B, Shaheduzzaman S, Petrovics G, Dobi A, Seifert M, Ravindranath L, Nau ME, Werner T, Vahey M, McLeod DG, Srivastava S, Sesterhenn IA: Transcriptome analyses of benign and malignant prostate epithelial cells in formalin-fixed paraffin-embedded whole-mounted radical prostatectomy specimens. Prostate Cancer Prostatic Dis 2008, 11:194-197.
- [44]Gilbert MTP, Haselkorn T, Bunce M, Sanchez JJ, Lucas SB, Jewell LD, Van Marck E, Worobey M: The isolation of nucleic acids from fixed, paraffin-embedded tissues-which methods are useful when? PLoS ONE 2007, 2:e537.
- [45]Coombs NJ, Gough AC, Primrose JN: Optimisation of DNA and RNA extraction from archival formalin-fixed tissue. Nucleic Acids Res 1999, 27:e12.
- [46]Scicchitano MS, Dalmas DA, Bertiaux MA, Anderson SM, Turner LR, Thomas RA, Mirable R, Boyce RW: Preliminary comparison of quantity, quality, and microarray performance of RNA extracted from formalin-fixed, paraffin-embedded, and unfixed frozen tissue samples. J Histochem Cytochem 2006, 54:1229-1237.
- [47]Tomlins SA, Mehra R, Rhoder DR, Shah RB, Rubin MA, Bruening E, Makarov V, Chinnaiyan AM: Whole transcriptime amplification for gene expression profiling and development of molecular archives. Neoplasia 2006, 8:153-162.
- [48]Dunn TA, Fedor H, Issacs WB, De Marzo AM, Luo J: Genome-wide expression analysis of recently processed formalin-fixed paraffin-embedded human prostate tissues. Prostate 2009, 69:214-218.
- [49]Ravo M, Mutarelli M, Ferraro L, Grober OM, Paris O, Tarallo R, Vigilante A, Cimino D, De Bortoli M, Nola E, Cicatiello L, Weisz A: Quantitative expression profiling of highly degraded RNA from formalin-fixed, paraffin-embedded breast tumour biopsies by oligonucleotide microarrays. Lab Invest 2008, 88:430-440.
- [50]Tumpey TM, Basler CF, Aguilar PV, Zeng H, Solorzano A, Swayne DE, Cox NJ, Katz JM, Taubenberger JK, Palese P, Garcia-Sastre A: Characterization of the reconstructed 1918 Spanish influenza pandemic virus. Science 2005, 310:77-80.
- [51]Reid AH, Fanning TG, Hultin JV, Taubenberger JK: Origin and evolution of the 1918 “Spanish” influenza virus hemagglutinin gene. Proc Natl Acad Sci USA 1999, 96:1651-1656.
- [52]Taubenberger JK, Reid AH, Lourens RM, Wang R, Jin G, Fanning TG: Characterization of the 1918 influenza virus polymerase genes. Nature 2005, 437:889-893.
- [53]Gibbs MJ, Gibbs AJ: Molecular virology: was the 1918 pandemic caused by a bird flu? Nature 2006, 440:e8.
- [54]Palmer SA, Smith O, Allaby RG: The blossoming of plant archaeogenetics. Annals Anat 2012, 194:146-156.
- [55]Wang RL, Stec A, Hey J, Lukens L, Doebley J: The limits of selection during maize domestication. Nature 1999, 398:236-239.
- [56]Sallon S, Solowey E, Cohen Y, Korchinksy R, Egil M, Woodhatch I, Simchoni O, Kislev M: Germination, genetics, and growth of an ancient date seed. Science 2008, 320:1464.
- [57]Yashina S, Gubin S, Maksimovich S, Yashina A, Gakhova E, Gilichinsky D: Regeneration of whole fertile plants from 30,000-y-old fruit tissue buried in Siberian permafrost. Proc Natl Acad Sci USA 2012, 109:4008-4013.
- [58]Rollo F: Characterisation by molecular hybridisation of RNA fragments isolated from ancient (1400 B.C.) seeds. Theor Appl Genet 1985, 71:330-333.
- [59]Cheah KSE, Osborne DJ: DNA lesions occur with loss of viability in embryos of ageing rye seed. Nature 1978, 272:593-599.
- [60]Venanzi FM, Rollo F: Mummy RNA lasts longer. Nature 1990, 343:25-26.
- [61]Fordyce SL, Avila-Arcos MC, Rasmussen M, Cappellini E, Romero-Navarro JA, Wales N, Alquezar-Planas DE, Penfield S, Brown TA, Vielle-Calzada JP, Montiel R, Jørgensen T, Odegaard N, Jacobs M, Arriaza B, Higham TFG, Bronk Ramsey C, Willerslev E, Gilbert MTP: Deep sequencing of RNA from ancient maize kernels. PLoS One 2013, 8:e50961.
- [62]Wang Z, Gerstein M, Snyder M: RNA-Seq: a revolutionary tool for transcriptomics. Nat Rev Genet 2009, 10:57-63.