期刊论文详细信息
Journal of Neuroinflammation
Differences in the distribution, phenotype and gene expression of subretinal microglia/macrophages in C57BL/6N (Crb1rd8/rd8) versus C57BL6/J (Crb1wt/wt) mice
Rafael L Ufret-Vincenty1  Tao Li1  Cynthia Xin-Zhao Wang1  Xiao Chen2  Kaiyan Zhang3  Bogale Aredo1 
[1] Department of Ophthalmology, UT Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas 75390-9057, TX, USA;Current address: Department of Ophthalmology, Wuhan General Hospital of Guangzhou Military Command, Wuhan 430070, PR China;Current address: Department of Ophthalmology, Hainan Provincial People’s Hospital, Haikou 570203, Hainan, PR China
关键词: Crb1;    activation;    gene expression;    aging;    Iba-1;    CD16;    rd8;    microglia;    macrophages;    subretinal;   
Others  :  1133400
DOI  :  10.1186/s12974-014-0221-4
 received in 2014-05-19, accepted in 2014-12-11,  发布年份 2015
PDF
【 摘 要 】

Background

Microglia/macrophages (MG/MΦ) are found in the subretinal space in both mice and humans. Our goal was to study the spatial and temporal distribution, the phenotype, and gene expression of subretinal MG/MΦ in mice with normal retinas and compare them to mice with known retinal pathology.

Methods

We studied C57BL/6 mice with (C57BL/6N), or without (C57BL/6J) the rd8 mutation in the Crb1 gene (which, in the presence of yet unidentified permissive/modifying genes, leads to a retinal degeneration), and documented their fundus appearance and the change with aging. Immunostaining of retinal pigment epithelium (RPE) flat mounts was done for 1) Ionized calcium binding adaptor (Iba)-1, 2) FcγIII/II Receptor (CD16/CD32, abbreviated as CD16), and 3) Macrophage mannose receptor (MMR). Reverse-transcription quantitative PCR (RT-qPCR) was done for genes involved in oxidative stress, complement activation and inflammation.

Results

The number of yellow fundus spots correlated highly with subretinal Iba-1+ cells. The total number of subretinal MG/MΦ increased with age in the rd8 mutant mice, but not in the wild-type (WT) mice. There was a centripetal shift in the distribution of the subretinal MG/MΦ with age. Old rd8 mutant mice had a greater number of CD16+ MG/MΦ. CD16+ cells had morphological signs of activation, and this was most prominent in old rd8 mutant mice (P <1×10−8 versus old WT mice). Subretinal MG/MΦ in rd8 mutant mice also expressed iNOS and MHC-II, and had ultrastructural signs of activation. Finally, rd8 mutant mouse RPE/ MG/MΦ RNA isolates showed an upregulation of Ccl2, CFB, C3, NF-kβ, CD200R and TNF-alpha. The retinas of rd8 mutant mice showed upregulation of HO-1, C1q, C4, and Nrf-2.

Conclusions

When compared to C57BL/6J mice, C57BL/6N mice demonstrate increased accumulation of subretinal MG/MΦ, displaying phenotypical, morphological, and gene-expression characteristics consistent with a pro-inflammatory shift. These changes become more prominent with aging and are likely due to the combination of the rd8 mutation and yet unidentified permissive/modulatory genes in the C57BL/6N mice. In contrast, aging leads to a scavenging phenotype in the C57BL/6J subretinal microglia/macrophages.

【 授权许可】

   
2015 Aredo et al.; licensee BioMed Central.

【 预 览 】
附件列表
Files Size Format View
20150304144547814.pdf 2712KB PDF download
Figure 8. 31KB Image download
Figure 7. 65KB Image download
Figure 6. 28KB Image download
Figure 5. 114KB Image download
Figure 4. 61KB Image download
Figure 3. 16KB Image download
Figure 2. 73KB Image download
Figure 1. 75KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

Figure 7.

Figure 8.

【 参考文献 】
  • [1]Mrak RE: Microglia in Alzheimer brain: a neuropathological perspective. Int J Alzheimers Dis 2012, 2012:165021.
  • [2]Ridolfi E, Barone C, Scarpini E, Galimberti D: The role of the innate immune system in Alzheimer’s disease and frontotemporal lobar degeneration: an eye on microglia. Clin Dev Immunol 2013, 2013:939786.
  • [3]Li Y, Liu L, Liu D, Woodward S, Barger SW, Mrak RE, Griffin WS: Microglial activation by uptake of fDNA via a scavenger receptor. J Neuroimmunol 2004, 147:50-5.
  • [4]Penfold PL, Killingsworth MC, Sarks SH: Senile macular degeneration. The involvement of giant cells in atrophy of the retinal pigment epithelium. Invest Ophthalmol Vis Sci 1986, 27:364-71.
  • [5]Penfold PL, Killingsworth MC, Sarks SH: Senile macular degeneration: the involvement of immunocompetent cells. Graefes Arch Clin Exp Ophthalmol 1985, 223:69-76.
  • [6]Löffler KU, Lee WR: Basal linear deposit in the human macula. Graefes Arch Clin Exp Ophthalmol 1986, 224:493-501.
  • [7]Grossniklaus HE, Miskala PH, Green WR, Bressler SB, Hawkins BS, Toth C, Wilson DJ, Bressler NM: Histopathologic and ultrastructural features of surgically excised subfoveal choroidal neovascular lesions: submacular surgery trials report no. 7. Arch Ophthalmol 2005, 123:914-21.
  • [8]Gupta N, Brown KE, Milam AH: Activated microglia in human retinitis pigmentosa, late-onset retinal degeneration, and age-related macular degeneration. Exp Eye Res 2003, 76:463-71.
  • [9]Combadière C, Feumi C, Raoul W, Keller N, Rodéro M, Pézard A, Lavalette S, Houssier M, Jonet L, Picard E, Debré P, Sirinyan M, Deterre P, Ferroukhi T, Cohen SY, Chauvaud D, Jeanny JC, Chemtob S, Behar-Cohen F, Sennlaub F: CX3CR1-dependent subretinal microglia cell accumulation is associated with cardinal features of age-related macular degeneration. J Clin Invest 2007, 117:2920-8.
  • [10]McMenamin PG, Loeffler KU: Cells resembling intraventricular macrophages are present in the subretinal space of human foetal eyes. Anat Rec 1990, 227:245-53.
  • [11]Ng TF, Streilein JW: Light-induced migration of retinal microglia into the subretinal space. Invest Ophthalmol Vis Sci 2001, 42:3301-10.
  • [12]Xu H, Chen M, Mayer EJ, Forrester JV, Dick AD: Turnover of resident retinal microglia in the normal adult mouse. Glia 2007, 55:1189-98.
  • [13]Luhmann UF, Robbie S, Munro PM, Barker SE, Duran Y, Luong V, Fitzke FW, Bainbridge JW, Ali RR, MacLaren RE: The drusenlike phenotype in aging Ccl2-knockout mice is caused by an accelerated accumulation of swollen autofluorescent subretinal macrophages. Invest Ophthalmol Vis Sci 2009, 50:5934-43.
  • [14]Chinnery HR, McLenachan S, Humphries T, Kezic JM, Chen X, Ruitenberg MJ, McMenamin PG: Accumulation of murine subretinal macrophages: effects of age, pigmentation and CX(3)CR1. Neurobiol Aging 2012, 33:1769-76.
  • [15]Joly S, Francke M, Ulbricht E, Beck S, Seeliger M, Hirrlinger P, Hirrlinger J, Lang KS, Zinkernagel M, Odermatt B, Samardzija M, Reichenbach A, Grimm C, Remé CE: Cooperative phagocytes: resident microglia and bone marrow immigrants remove dead photoreceptors in retinal lesions. Am J Pathol 2009, 174:2310-23.
  • [16]Eter N, Engel DR, Meyer L, Helb HM, Roth F, Maurer J, Holz FG, Kurts C: In vivo visualization of dendritic cells, macrophages, and microglial cells responding to laser-induced damage in the fundus of the eye. Invest Ophthalmol Vis Sci 2008, 49:3649-58.
  • [17]Langmann T: Microglia activation in retinal degeneration. J Leukoc Biol 2007, 81:1345-51.
  • [18]Hughes EH, Schlichtenbrede FC, Murphy CC, Sarra GM, Luthert PJ, Ali RR, Dick AD: Generation of activated sialoadhesin-positive microglia during retinal degeneration. Invest Ophthalmol Vis Sci 2003, 44:2229-34.
  • [19]Raoul W, Feumi C, Keller N, Lavalette S, Houssier M, Behar-Cohen F, Combadière C, Sennlaub F: Lipid-bloated subretinal microglial cells are at the origin of drusen appearance in CX3CR1-deficient mice. Ophthalmic Res 2008, 40:115-9.
  • [20]Tuo J, Bojanowski CM, Zhou M, Shen D, Ross RJ, Rosenberg KI, Cameron DJ, Yin C, Kowalak JA, Zhuang Z, Zhang K, Chan CC: Murine ccl2/cx3cr1 deficiency results in retinal lesions mimicking human age-related macular degeneration. Invest Ophthalmol Vis Sci 2007, 48:3827-36.
  • [21]Ufret-Vincenty RL, Aredo B, Liu X, McMahon A, Chen PW, Sun H, Niederkorn JY, Kedzierski W: Transgenic mice expressing variants of complement factor H develop AMD-like retinal findings. Invest Ophthalmol Vis Sci 2010, 51:5878-87.
  • [22]Mehalow AK, Kameya S, Smith RS, Hawes NL, Denegre JM, Young JA, Bechtold L, Haider NB, Tepass U, Heckenlively JR, Chang B, Naggert JK, Nishina PM: CRB1 is essential for external limiting membrane integrity and photoreceptor morphogenesis in the mammalian retina. Hum Mol Genet 2003, 12:2179-89.
  • [23]Mattapallil MJ, Wawrousek EF, Chan CC, Zhao H, Roychoudhury J, Ferguson TA, Caspi RR: The Rd8 mutation of the Crb1 gene is present in vendor lines of C57BL/6N mice and embryonic stem cells, and confounds ocular induced mutant phenotypes. Invest Ophthalmol Vis Sci 2012, 53:2921-7.
  • [24]Luhmann UF, Lange CA, Robbie S, Munro PM, Cowing JA, Armer HE, Luong V, Carvalho LS, MacLaren RE, Fitzke FW, Bainbridge JW, Ali RR: Differential modulation of retinal degeneration by Ccl2 and Cx3cr1 chemokine signalling. PLoS One 2012, 7:e35551.
  • [25]Luhmann UF, Carvalho LS, Holthaus SM, Cowing JA, Greenaway S, Chu CJ, Herrmann P, Smith AJ, Munro PM, Potter P, Bainbridge JW, Ali RR: The severity of retinal pathology in homozygous Crb1rd8/rd8 mice is dependent on additional genetic factors. Hum Mol Genet 2015, 24:128-41.
  • [26]Luhmann UF, Carvalho LS, Robbie SJ, Cowing JA, Duran Y, Munro PM, James WB, Bainbridge JW, Ali RR: Ccl2, Cx3r1 and Ccl2/Cx3cr1 chemokine deficiencies are not sufficient to cause age-related retinal degeneration. Exp Eye Res 2013, 107:80-7.
  • [27]Raoul W, Auvynet C, Camelo S, Guillonneau X, Feumi C, Combadière C, Sennlaub F: CCL2/CCR2 and CX3CL1/CX3CR1 chemokine axes and their possible involvement in age-related macular degeneration. J Neuroinflammation 2010, 7:87. BioMed Central Full Text
  • [28]Mata NL, Weng J, Travis GH: Biosynthesis of a major lipofuscin fluorophore in mice and humans with ABCR-mediated retinal and macular degeneration. Proc Natl Acad Sci U S A 2000, 97:7154-9.
  • [29]Charbel Issa P, Singh MS, Lipinski DM, Chong NV, Delori FC, Barnard AR, MacLaren RE: Optimization of in vivo confocal autofluorescence imaging of the ocular fundus in mice and its application to models of human retinal degeneration. Invest Ophthalmol Vis Sci 2012, 53:1066-75.
  • [30]Terada N, Ohno N, Li Z, Fujii Y, Baba T, Ohno S: Application of in vivo cryotechnique to the examination of cells and tissues in living animal organs. Histol Histopathol 2006, 21:265-72.
  • [31]Ohno N, Terada N, Murata S-I, Katoh R, Ohno S: Application of cryotechniques with freeze-substitution for the immunohistochemical demonstration of intranuclear pCREB and chromosome territory. J Histochem Cytochem 2005, 53:55-62.
  • [32]Terada N, Ohno S: Immunohistochemical appilication of crytechniques to native morphology of cells and tissues. Acta Histochem Cytochem 2004, 37:339-45.
  • [33]Yoon KH, Fitzgerald PG: Periplakin interactions with lens intermediate and beaded filaments. Invest Ophthalmol Vis Sci 2009, 50:1283-9.
  • [34]McDonald KL, Morphew M, Verkade P, Muller-Reichert T: Recent Advances in High-Pressure Freezing. In Methods in Molecular Biology, Volume 369: Electron Microscopy: Methods and Protocols. 2nd ed. Edited by Kuo J. Humana Press inc, Totowa, NJ; 2007:143-73.
  • [35]Xin-Zhao Wang C, Zhang K, Aredo B, Lu H, Ufret-Vincenty RL: Novel method for the rapid isolation of RPE cells specifically for RNA extraction and analysis. Exp Eye Res 2012, 102:1-9.
  • [36]Wong WT: Microglial aging in the healthy CNS: phenotypes, drivers, and rejuvenation. Front Cell Neurosci 2013, 7:22.
  • [37]Chen X, Kezic J, Bernard C, McMenamin PG: Rd8 mutation in the Crb1 gene of CD11c-eYFP transgenic reporter mice results in abnormal numbers of CD11c-positive cells in the retina. J Neuropathol Exp Neurol 2013, 72:782-90.
  • [38]Low BE, Krebs MP, Joung JK, Tsai SQ, Nishina PM, Wiles MV: Correction of the Crb1rd8 allele and retinal phenotype in C57BL/6N mice via TALEN-mediated homology-directed repair. Invest Ophthalmol Vis Sci 2014, 55:387-95.
  • [39]Kezic J, McMenamin PG: Differential turnover rates of monocyte-derived cells in varied ocular tissue microenvironments. J Leukoc Biol 2008, 84:721-9.
  • [40]Kaczmarek M, Nowicka A, Kozłowska M, Zurawski J, Batura-Gabryel H, Sikora J: Evaluation of the phenotype pattern of macrophages isolated from malignant and non-malignant pleural effusions. Tumour Biol 2011, 32:1123-32.
  • [41]Kigerl KA, Gensel JC, Ankeny DP, Alexander JK, Donnelly DJ, Popovich PG: Identification of two distinct macrophage subsets with divergent effects causing either neurotoxicity or regeneration in the injured mouse spinal cord. J Neurosci 2009, 29:13435-44.
  • [42]Li K, Xu W, Guo Q, Jiang Z, Wang P, Yue Y, Xiong S: Differential macrophage polarization in male and female BALB/c mice infected with coxsackievirus B3 defines susceptibility to viral myocarditis. Circ Res 2009, 105:353-64.
  • [43]Ziegler-Heitbrock L: The CD14+ CD16+ blood monocytes: their role in infection and inflammation. J Leukoc Biol 2007, 81:584-92.
  • [44]Buttari B, Segoni L, Profumo E, D’Arcangelo D, Rossi S, Facchiano F, Businaro R, Iuliano L, Riganò R: 7-Oxo-cholesterol potentiates pro-inflammatory signaling in human M1 and M2 macrophages. Biochem Pharmacol 2013, 86:130-7.
  • [45]Ziegler-Heitbrock L: Monocyte subsets in man and other species. Cell Immunol 2014, 289:135-9.
  • [46]Murinello S, Mullins RF, Lotery AJ, Perry VH, Teeling JL: Fcγ receptor upregulation is associated with immune complex inflammation in the mouse retina and early age-related macular degeneration. Invest Ophthalmol Vis Sci 2014, 55:247-58.
  • [47]Liu C, Li Y, Yu J, Feng L, Hou S, Liu Y, Guo M, Xie Y, Meng J, Zhang H, Xiao B, Ma C: Targeting the shift from M1 to M2 macrophages in experimental autoimmune encephalomyelitis mice treated with fasudil. PLoS One 2013, 8:e54841.
  • [48]Guerrero AR, Uchida K, Nakajima H, Watanabe S, Nakamura M, Johnosn WE, Baba H: Blockade of interleukin-6 signaling inhibits the classic pathway and promotes an alternative pathway of macrophage activation after spinal cord injury in mice. J Neuroinflammation 2012, 9:40. BioMed Central Full Text
  • [49]Hirai T, Uchida K, Nakajima H, Guerrero AR, Takeura N, Watanabe S, Sujita D, Yoshida A, Johnson WE: The prevalence and phenotype of activated microglia/macrophages within the spinal cord of the hyperostotic mouse (twy/twy) changes in response to chronic progressive spinal cord compression: implications for human cervical compressive myelopathy. PLoS One 2013, 8:e64528.
  • [50]Anower AK, Shim JA, Choi B, Kwon HJ, Sohn S: The role of classical and alternative macrophages in the immunopathogenesis of herpes simplex virus-induced inflammation in a mouse model. J Dermatol Sci 2013, 73:198-208.
  • [51]Mantovani A, Sica A, Sozzani S, Allavena P, Vecchi A, Locati M: The chemokine system in diverse forms of macrophage activation and polarization. Trends Immunol 2004, 25:677-86.
  • [52]Martinez-Pomares L, Wienke D, Stillion R, McKenzie EJ, Arnold JN, Harris J, McGreal E, Sim RB, Isacke CM, Gordon S: Carbohydrate-independent recognition of collagens by the macrophage mannose receptor. Eur J Immunol 2006, 36:1074-82.
  • [53]Martinez FO, Sica A, Mantovani A, Locati M: Macrophage activation and polarization. Front Biosci 2008, 13:453-61.
  • [54]Gordon S, Martinez FO: Alternative activation of macrophages: mechanism and functions. Immunity 2010, 32:593-604.
  • [55]Gustafsson C, Mjösberg J, Matussek A, Geffers R, Matthiesen L, Berg G, Sharma S, Buer J, Ernerudh J: Gene expression profiling of human decidual macrophages: evidence for immunosuppressive phenotype. PLoS One 2008, 3:e2078.
  • [56]Dace DS, Apte RS: Effect of senescence on macrophage polarization and angiogenesis. Rejuvenation Res 2008, 11:177-85.
  • [57]Ambati J, Anand A, Fernandez S, Sakurai E, Lynn BC, Kuziel WA, Rollins BJ, Ambati BK: An animal model of age-related macular degeneration in senescent Ccl-2- or Ccr-2-deficient mice. Nat Med 2003, 9:1390-7.
  • [58]Apte RS, Richter J, Herndon J, Ferguson TA: Macrophages inhibit neovascularization in a murine model of age-related macular degeneration. PLoS Med 2006, 3:e310.
  • [59]Kelly J, Ali Khan A, Yin J, Ferguson TA, Apte RS: Senescence regulates macrophage activation and angiogenic fate at sites of tissue injury in mice. J Clin Invest 2007, 117:3421-6.
  • [60]Espinosa-Heidmann DG, Suner IJ, Hernandez EP, Monroy D, Csaky KG, Cousins SW: Macrophage depletion diminishes lesion size and severity in experimental choroidal neovascularization. Invest Ophthalmol Vis Sci 2003, 44:3586-92.
  • [61]Cousins SW, Espinosa-Heidmann DG, Csaky KG: Monocyte activation in patients with age-related macular degeneration: a biomarker of risk for choroidal neovascularization? Arch Ophthalmol 2004, 122:1013-8.
  • [62]Jager MJ, Ly LV, El Filali M, Madigan MC: Macrophages in uveal melanoma and in experimental ocular tumor models: friends or foes? Prog Retin Eye Res 2011, 30:129-46.
  • [63]Cousins SW, Espinosa-Heidmann DG, Alexandridou A, Sall J, Dubovy S, Csaky K: The role of aging, high fat diet and blue light exposure in an experimental mouse model for basal laminar deposit formation. Exp Eye Res 2002, 75:543-53.
  • [64]Weikel KA, Fitzgerald P, Shang F, Caceres MA, Bian Q, Handa JT, Stitt AW, Taylor A: Natural history of age-related retinal lesions that precede AMD in mice fed high or low glycemic index diets. Invest Ophthalmol Vis Sci 2012, 53:622-32.
  • [65]Xu H, Chen M, Manivannan A, Lois N, Forrester JV: Age-dependent accumulation of lipofuscin in perivascular and subretinal microglia in experimental mice. Aging Cell 2008, 7:58-68.
  • [66]Luo C, Zhao J, Madden A, Chen M: Complement expression in retinal pigment epithelial cells is modulated by activated macrophages. Exp Eye Res 2013, 112:93-101.
  • [67]Ma W, Cojocaru R, Gotoh N, Gieser L, Villasmil R, Cogliati T, Swaroop A, Wong WT: Gene expression changes in aging retinal microglia: relationship to microglial support functions and regulation of activation. Neurobiol Aging 2013, 34:2310-21.
  • [68]Wang L, Kondo N, Cano M, Ebrahimi K, Yoshida T, Barnett BP, Biswal S, Handa JT: Nrf2 signaling modulates cigarette smoke-induced complement activation in retinal pigmented epithelial cells. Free Radic Biol Med 2014, 70:155-66.
  • [69]Banerjee D, Dick AD: Blocking CD200-CD200 receptor axis augments NOS-2 expression and aggravates experimental autoimmune uveoretinitis in Lewis rats. Ocul Immunol Inflam 2004, 12:115-25.
  文献评价指标  
  下载次数:87次 浏览次数:10次