期刊论文详细信息
Clinical Proteomics
Investigation of ovarian cancer associated sialylation changes in N-linked glycopeptides by quantitative proteomics
Ramila Philip1  Zacharie Nickens1  Punit Shah1  Julie Hafner1  Vivekananda Shetty1 
[1] Immunotope, Inc., 3805 Old Easton Road, Doylestown, PA, 18902, USA
关键词: Western blot;    Mass spectrometry;    N-linked glycopeptides;    Lectin;    Sialylation;    Quantitative proteomics;    Ovarian cancer;   
Others  :  1026354
DOI  :  10.1186/1559-0275-9-10
 received in 2012-02-28, accepted in 2012-06-26,  发布年份 2012
PDF
【 摘 要 】

Background

In approximately 80% of patients, ovarian cancer is diagnosed when the patient is already in the advanced stages of the disease. CA125 is currently used as the marker for ovarian cancer; however, it lacks specificity and sensitivity for detecting early stage disease. There is a critical unmet need for sensitive and specific routine screening tests for early diagnosis that can reduce ovarian cancer lethality by reliably detecting the disease at its earliest and treatable stages.

Results

In this study, we investigated the N-linked sialylated glycopeptides in serum samples from healthy and ovarian cancer patients using Lectin-directed Tandem Labeling (LTL) and iTRAQ quantitative proteomics methods. We identified 45 N-linked sialylated glycopeptides containing 46 glycosylation sites. Among those, ten sialylated glycopeptides were significantly up-regulated in ovarian cancer patients’ serum samples. LC-MS/MS analysis of the non-glycosylated peptides from the same samples, western blot data using lectin enriched glycoproteins of various ovarian cancer type samples, and PNGase F (+/−) treatment confirmed the sialylation changes in the ovarian cancer samples.

Conclusion

Herein, we demonstrated that several proteins are aberrantly sialylated in N-linked glycopeptides in ovarian cancer and detection of glycopeptides with abnormal sialylation changes may have the potential to serve as biomarkers for ovarian cancer.

【 授权许可】

   
2012 Shetty et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20140903115656891.pdf 1468KB PDF download
Figure 7. 31KB Image download
Figure 6. 78KB Image download
Figure 5. 81KB Image download
Figure 4. 80KB Image download
Figure 3. 79KB Image download
Figure 2. 78KB Image download
Figure 1. 65KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

Figure 7.

【 参考文献 】
  • [1]Zhang Z, Bast RC Jr, Yu Y, Li J, Sokoll LJ, Rai AJ, Rosenzweig JM, Cameron B, Wang YY, Meng XY, Berchuck A, Van Haaften-Day C, Hacker NF, de Bruijn HW, van der Zee AG, Jacobs IJ, Fung ET, Chan DW: Three biomarkers identified from serum proteomic analysis for the detection of early stage ovarian cancer. Cancer Res 2004, 64:5882-5890.
  • [2]Hays JL, Kim G, Giuroiu I, Kohn EC: Proteomics and ovarian cancer: integrating proteomics information into clinical care. J Proteomics 2010, 73:1864-1872.
  • [3]Jemal A, Siegel R, Xu J, Ward E: Cancer statistics, 2010. CA Cancer J Clin 2010, 60:277-300.
  • [4]Piver MS, Wong C: Role of prophylactic surgery for women with genetic predisposition to cancer. Clin Obstet Gynecol 1998, 41:215-224.
  • [5]Partridge E, Kreimer AR, Greenlee RT, Williams C, Xu JL, Church TR, Kessel B, Johnson CC, Weissfeld JL, Isaacs C, Andriole GL, Ogden S, Ragard LR, Buys SS: Results from four rounds of ovarian cancer screening in a randomized trial. Obstet Gynecol 2009, 113:775-782.
  • [6]Mor G, Visintin I, Lai Y, Zhao H, Schwartz P, Rutherford T, Yue L, Bray-Ward P, Ward DC: Serum protein markers for early detection of ovarian cancer. Proc Natl Acad Sci U S A 2005, 102:7677-7682.
  • [7]Zhao J, Patwa TH, Qiu W, Shedden K, Hinderer R, Misek DE, Anderson MA, Simeone DM, Lubman DM: Glycoprotein microarrays with multi-lectin detection: unique lectin binding patterns as a tool for classifying normal, chronic pancreatitis and pancreatic cancer sera. J Proteome Res 2007, 6:1864-1874.
  • [8]Wang PH, Li YF, Juang CM, Lee YR, Chao HT, Ng HT, Tsai YC, Yuan CC: Expression of sialyltransferase family members in cervix squamous cell carcinoma correlates with lymph node metastasis. Gynecol Oncol 2002, 86:45-52.
  • [9]Wang PH, Li YF, Juang CM, Lee YR, Chao HT, Tsai YC, Yuan CC: Altered mRNA expression of sialyltransferase in squamous cell carcinomas of the cervix. Gynecol Oncol 2001, 83:121-127.
  • [10]Wang PH, Lee WL, Juang CM, Yang YH, Lo WH, Lai CR, Hsieh SL, Yuan CC: Altered mRNA expressions of sialyltransferases in ovarian cancers. Gynecol Oncol 2005, 99:631-639.
  • [11]Dall’Olio F, Chiricolo M: Sialyltransferases in cancer. Glycoconj J 2001, 18:841-850.
  • [12]Dall’Olio F, Chiricolo M, Lau JT: Differential expression of the hepatic transcript of beta-galactoside alpha2,6-sialyltransferase in human colon cancer cell lines. Int J Cancer 1999, 81:243-247.
  • [13]Recchi MA, Hebbar M, Hornez L, Harduin-Lepers A, Peyrat JP, Delannoy P: Multiplex reverse transcription polymerase chain reaction assessment of sialyltransferase expression in human breast cancer. Cancer Res 1998, 58:4066-4070.
  • [14]Wang PH, Lee WL, Lee YR, Juang CM, Chen YJ, Chao HT, Tsai YC, Yuan CC: Enhanced expression of alpha 2,6-sialyltransferase ST6Gal I in cervical squamous cell carcinoma. Gynecol Oncol 2003, 89:395-401.
  • [15]Anderson NL, Anderson NG: The human plasma proteome: history, character, and diagnostic prospects. Mol Cell Proteomics 2002, 1:845-867.
  • [16]Righetti PG, Castagna A, Antonioli P, Boschetti E: Prefractionation techniques in proteome analysis: the mining tools of the third millennium. Electrophoresis 2005, 26:297-319.
  • [17]Righetti PG, Castagna A, Herbert B, Reymond F, Rossier JS: Prefractionation techniques in proteome analysis. Proteomics 2003, 3:1397-1407.
  • [18]Wang Y, Wu SL, Hancock WS: Approaches to the study of N-linked glycoproteins in human plasma using lectin affinity chromatography and nano-HPLC coupled to electrospray linear ion trap–Fourier transform mass spectrometry. Glycobiology 2006, 16:514-523.
  • [19]Aranganathan S, Senthil K, Nalini N: A case control study of glycoprotein status in ovarian carcinoma. Clin Biochem 2005, 38:535-539.
  • [20]Shamberger RJ: Serum sialic acid in normals and in cancer patients. J Clin Chem Clin Biochem 1984, 22:647-651.
  • [21]Berbec H, Paszkowska A, Siwek B, Gradziel K, Cybulski M: Total serum sialic acid concentration as a supporting marker of malignancy in ovarian neoplasia. Eur J Gynaecol Oncol 1999, 20:389-392.
  • [22]Hagglund P, Bunkenborg J, Elortza F, Jensen ON, Roepstorff P: A new strategy for identification of N-glycosylated proteins and unambiguous assignment of their glycosylation sites using HILIC enrichment and partial deglycosylation. J Proteome Res 2004, 3:556-566.
  • [23]Wuhrer M, de Boer AR, Deelder AM: Structural glycomics using hydrophilic interaction chromatography (HILIC) with mass spectrometry. Mass Spectrom Rev 2009, 28:192-206.
  • [24]Kaji H, Yamauchi Y, Takahashi N, Isobe T: Mass spectrometric identification of N-linked glycopeptides using lectin-mediated affinity capture and glycosylation site-specific stable isotope tagging. Nat Protoc 2006, 1:3019-3027.
  • [25]Zhang H, Li XJ, Martin DB, Aebersold R: Identification and quantification of N-linked glycoproteins using hydrazide chemistry, stable isotope labeling and mass spectrometry. Nat Biotechnol 2003, 21:660-666.
  • [26]Xu Y, Wu Z, Zhang L, Lu H, Yang P, Webley PA, Zhao D: Highly specific enrichment of glycopeptides using boronic acid-functionalized mesoporous silica. Anal Chem 2009, 81:503-508.
  • [27]Ueda K, Takami S, Saichi N, Daigo Y, Ishikawa N, Kohno N, Katsumata M, Yamane A, Ota M, Sato TA, Nakamura Y, Nakagawa H: Development of serum glycoproteomic profiling technique; simultaneous identification of glycosylation sites and site-specific quantification of glycan structure changes. Mol Cell Proteomics 2010, 9:1819-1828.
  • [28]Shetty V, Nickens Z, Shah P, Sinnathamby G, Semmes OJ, Philip R: Investigation of sialylation aberration in N-linked glycopeptides by lectin and tandem labeling (LTL) quantitative proteomics. Anal Chem 2010, 82:9201-9210.
  • [29]Qiu R, Regnier FE: Use of multidimensional lectin affinity chromatography in differential glycoproteomics. Anal Chem 2005, 77:2802-2809.
  • [30]Qiu R, Regnier FE: Comparative glycoproteomics of N-linked complex-type glycoforms containing sialic acid in human serum. Anal Chem 2005, 77:7225-7231.
  • [31]Blatter Garin MC, Abbott C, Messmer S, Mackness M, Durrington P, Pometta D, James RW: Quantification of human serum paraoxonase by enzyme-linked immunoassay: population differences in protein concentrations. Biochem J 1994, 304(Pt 2):549-554.
  • [32]Andersen T, Munthe-Fog L, Garred P, Jacobsen S: Serum levels of ficolin-3 (Hakata antigen) in patients with systemic lupus erythematosus. J Rheumatol 2009, 36:757-759.
  • [33]Diamandis EP, Scorilas A, Fracchioli S, Van Gramberen M, De Bruijn H, Henrik A, Soosaipillai A, Grass L, Yousef GM, Stenman UH, Massobrio M, Van Der Zee AG, Vergote I, Katsaros D: Human kallikrein 6 (hK6): a new potential serum biomarker for diagnosis and prognosis of ovarian carcinoma. J Clin Oncol 2003, 21:1035-1043.
  • [34]Camuzcuoglu H, Arioz DT, Toy H, Kurt S, Celik H, Erel O: Serum paraoxonase and arylesterase activities in patients with epithelial ovarian cancer. Gynecol Oncol 2009, 112:481-485.
  • [35]Hassan MI, Waheed A, Yadav S, Singh TP, Ahmad F: Zinc alpha 2-glycoprotein: a multidisciplinary protein. Mol Cancer Res 2008, 6:892-906.
  • [36]Miyoshi E, Nakano M: Fucosylated haptoglobin is a novel marker for pancreatic cancer: detailed analyses of oligosaccharide structures. Proteomics 2008, 8:3257-3262.
  • [37]Okuyama N, Ide Y, Nakano M, Nakagawa T, Yamanaka K, Moriwaki K, Murata K, Ohigashi H, Yokoyama S, Eguchi H, Ishikawa O, Ito T, Kato M, Kasahara A, Kawano S, Gu J, Taniguchi N, Miyoshi E: Fucosylated haptoglobin is a novel marker for pancreatic cancer: a detailed analysis of the oligosaccharide structure and a possible mechanism for fucosylation. Int J Cancer 2006, 118:2803-2808.
  • [38]Zhao C, Annamalai L, Guo C, Kothandaraman N, Koh SC, Zhang H, Biswas A, Choolani M: Circulating haptoglobin is an independent prognostic factor in the sera of patients with epithelial ovarian cancer. Neoplasia 2007, 9:1-7.
  • [39]Katnik I, Jadach J, Kmieciak K, Gerber J, Dobryszycka W: Measurements of haptoglobin by the reaction with concanavalin A in sera of patients with ovarian tumours. Eur J Clin Chem Clin Biochem 1995, 33:727-732.
  • [40]Lurie G, Wilkens LR, Thompson PJ, McDuffie KE, Carney ME, Terada KY, Goodman MT: Genetic polymorphisms in the Paraoxonase 1 gene and risk of ovarian epithelial carcinoma. Cancer Epidemiol Biomarkers Prev 2008, 17:2070-2077.
  • [41]Rajpal R, Dowling P, Meiller J, Clarke C, Murphy WG, O'Connor R, Kell M, Mitsiades C, Richardson P, Anderson KC, Clynes M, O'Gorman P: A novel panel of protein biomarkers for predicting response to thalidomide-based therapy in newly diagnosed multiple myeloma patients. Proteomics 2011, 11:1391-1402.
  • [42]Yip PY, Kench JG, Rasiah KK, Benito RP, Lee CS, Stricker PD, Henshall SM, Sutherland RL, Horvath LG: Low AZGP1 expression predicts for recurrence in margin-positive, localized prostate cancer. Prostate 2011, 71:1638-1645.
  • [43]Mracek T, Stephens NA, Gao D, Bao Y, Ross JA, Ryden M, Arner P, Trayhurn P, Fearon KC, Bing C: Enhanced ZAG production by subcutaneous adipose tissue is linked to weight loss in gastrointestinal cancer patients. Br J Cancer 2011, 104:441-447.
  • [44]O'Hurley G, O'Grady A, Smyth P, Byrne J, O'Leary JJ, Sheils O, Watson RW, Kay EW: Evaluation of Zinc-alpha-2-Glycoprotein and Proteasome Subunit beta-Type 6 Expression in Prostate Cancer Using Tissue Microarray Technology. Appl Immunohistochem Mol Morphol 2010, 18:512-517.
  • [45]Skipworth RJ, Stewart GD, Bhana M, Christie J, Sturgeon CM, Guttridge DC, Cronshaw AD, Fearon KC, Ross JA: Mass spectrometric detection of candidate protein biomarkers of cancer cachexia in human urine. Int J Oncol 2010, 36:973-982.
  • [46]Irmak S, Tilki D, Heukeshoven J, Oliveira-Ferrer L, Friedrich M, Huland H, Ergun S: Stage-dependent increase of orosomucoid and zinc-alpha2-glycoprotein in urinary bladder cancer. Proteomics 2005, 5:4296-4304.
  • [47]Thompson S, Guthrie D, Turner GA: Fucosylated forms of alpha-1-antitrypsin that predict unresponsiveness to chemotherapy in ovarian cancer. Br J Cancer 1988, 58:589-593.
  • [48]Ahmed N, Oliva KT, Barker G, Hoffmann P, Reeve S, Smith IA, Quinn MA, Rice GE: Proteomic tracking of serum protein isoforms as screening biomarkers of ovarian cancer. Proteomics 2005, 5:4625-4636.
  • [49]Liu Z, Cao J, He Y, Qiao L, Xu C, Lu H, Yang P: Tandem 18O stable isotope labeling for quantification of N-glycoproteome. J Proteome Res 2010, 9:227-236.
  • [50]Lemmel C, Weik S, Eberle U, Dengjel J, Kratt T, Becker HD, Rammensee HG, Stevanovic S: Differential quantitative analysis of MHC ligands by mass spectrometry using stable isotope labeling. Nat Biotechnol 2004, 22:450-454.
  • [51]Thobhani S, Yuen CT, Bailey MJ, Jones C: Identification and quantification of N-linked oligosaccharides released from glycoproteins: an inter-laboratory study. Glycobiology 2009, 19:201-211.
  文献评价指标  
  下载次数:5次 浏览次数:14次