期刊论文详细信息
GigaScience
Multi-platform microRNA profiling of hepatoblastoma patients using formalin fixed paraffin embedded archival samples
Aniruddha Chatterjee2  Michael R. Eccles2  Michael J. Sullivan1  Rachel V. Purcell4  Anna L. Leichter3 
[1] Royal Children’s Hospital, Melbourne, VIC, Australia;Maurice Wilkins Centre for Molecular Biodiscovery, Level 2, 3A Symonds Street, Auckland, New Zealand;Department of Pathology, Dunedin School of Medicine, University of Otago, 270 Great King Street, Dunedin 9054, New Zealand;Children’s Cancer Research Group, University of Otago, Christchurch, New Zealand
关键词: Epigenetics;    Hepatoblastoma;    NanoString;    Next-generation sequencing;    Microarray;    RNA expression;    FFPE;    miRNA;   
Others  :  1234142
DOI  :  10.1186/s13742-015-0099-9
 received in 2015-06-14, accepted in 2015-11-17,  发布年份 2015
PDF
【 摘 要 】

Background

Formalin fixed paraffin embedded (FFPE) samples are a valuable resource in cancer research and have the potential to be extensively used. However, they are often underused because of degradation and chemical modifications occurring in the RNA that can present obstacles in downstream analysis. In routine medical care, FFPE material is examined and archived, therefore clinical collections of many types of cancers exist. It is beneficial to assess and record the quality of data that can be obtained from this type of material. The current study investigated three independent platforms and their ability to profile microRNAs (miRNAs) within FFPE samples from hepatoblastoma (HB) patients.

Findings

Here we present three types of datasets consisting of miRNA profiles for 13 HB patients with different tumour types and molecular variations. The three platforms that were used to generate these data are: next-generation sequencing (Illumina MiSeq), microarray (Affymetrix ®GeneChip ®miRNA 3.0 array) and NanoString (nCounter, Human v2 miRNA Assay). The mature miRNAs identified are based on miRBase version 17 and 18.

Conclusions

These datasets provide a global landscape of miRNA expression for a rare childhood cancer that has not previously been well characterised. These data could serve as a resource for future studies aiming to make comparisons of HB miRNA profiles and to document aberrant miRNA expression in this type of cancer.

【 授权许可】

   
2015 Leichter et al.

【 预 览 】
附件列表
Files Size Format View
20151128042737765.pdf 698KB PDF download
Fig. 1. 62KB Image download
【 图 表 】

Fig. 1.

【 参考文献 】
  • [1]Krek A, Grun D, Poy MN, Wolf R, Rosenberg L, Epstein EJ et al.. Combinatorial microRNA target predictions. Nat Genet. 2005; 37(5):495-500.
  • [2]Lewis BP, Burge CB, Bartel DP. Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell. 2005; 120(1):15-20.
  • [3]Magrelli A, Azzalin G, Salvatore M, Viganotti M, Tosto F, Colombo T et al.. Altered microRNA Expression Patterns in Hepatoblastoma Patients. Translat Oncol. 2009; 2(3):157-163.
  • [4]Calin GA, Dumitru CD, Shimizu M, Bichi R, Zupo S, Noch E et al.. Frequent deletions and down-regulation of micro-RNA genes miR15 and miR16 at 13q14 in chronic lymphocytic leukemia. Proc Natl Acad Sci U S A. 2002; 99(24):15524-15529.
  • [5]Lu J, Getz G, Miska EA, Alvarez-Saavedra E, Lamb J, Peck D et al.. MicroRNA expression profiles classify human cancers. Nature. 2005; 435(7043):834-838.
  • [6]Chatterjee A, Eccles MR. DNA methylation and epigenomics: new technologies and emerging concepts. Genome Biol. 2015; 16:103. BioMed Central Full Text
  • [7]Von Ahlfen S, Missel A, Bendrat K, Schlumpberger M. Determinants of RNA quality from FFPE samples. PLoS One. 2007; 2(12): Article ID e1261
  • [8]Pradervand S, Weber J, Lemoine F, Consales F, Paillusson A, Dupasquier M et al.. Concordance among digital gene expression, microarrays, and qPCR when measuring differential expression of microRNAs. Biotechniques. 2010; 48(3):219-222.
  • [9]Git A, Dvinge H, Salmon-Divon M, Osborne M, Kutter C, Hadfield J et al.. Systematic comparison of microarray profiling, real-time PCR, and next-generation sequencing technologies for measuring differential microRNA expression. RNA. 2010; 16(5):991-1006.
  • [10]Kolbert CP, Feddersen RM, Rakhshan F, Grill DE, Simon G, Middha S et al.. Multi-platform analysis of microRNA expression measurements in RNA from fresh frozen and FFPE tissues. PLoS One. 2013; 8(1): Article ID e52517
  • [11]Glud M, Klausen M, Gniadecki R, Rossing M, Hastrup N, Nielsen FC et al.. MicroRNA expression in melanocytic nevi: the usefulness of formalin-fixed, paraffin-embedded material for miRNA microarray profiling. J Invest Dermatol. 2008; 129(5):1219-1224.
  • [12]Li J, Smyth P, Flavin R, Cahill S, Denning K, Aherne S et al.. Comparison of miRNA expression patterns using total RNA extracted from matched samples of formalin-fixed paraffin-embedded (FFPE) cells and snap frozen cells. BMC Biotechnol. 2007; 7(1):36. BioMed Central Full Text
  • [13]Rosenfeld N, Aharonov R, Meiri E, Rosenwald S, Spector Y, Zepeniuk M et al.. MicroRNAs accurately identify cancer tissue origin. Nat Biotech. 2008; 26(4):462-469.
  • [14]Tetzlaff MT, Liu A, Xu X, Master SR, Baldwin DA, Tobias JW et al.. Differential expression of miRNAs in papillary thyroid carcinoma compared to multinodular goiter using formalin fixed paraffin embedded tissues. Endocr Pathol. 2007; 18(3):163-173.
  • [15]Zhang X, Chen J, Radcliffe T, Lebrun DP, Tron VA, Feilotter H. An array-based analysis of microRNA expression comparing matched frozen and formalin-fixed paraffin-embedded human tissue samples. J Mol Diagnos. 2008; 10(6):513-519.
  • [16]von Frowein J, Pagel P, Kappler R, von Schweinitz D, Roscher A, Schmid I. MicroRNA‐492 is processed from the keratin 19 gene and up‐regulated in metastatic hepatoblastoma. Hepatology. 2011; 53(3):833-842.
  • [17]Chatterjee A, Leichter AL, Fan V, Tsai P, Purcell RV, Sullivan MJ et al.. A cross comparison of technologies for the detection of microRNAs in clinical FFPE samples of hepatoblastoma patients. Sci Rep. 2015; 5:10438.
  • [18]Purcell R, Childs M, Maibach R, Miles C, Turner C, Zimmermann A et al.. HGF/c-Met related activation of b-catenin in hepatoblastoma. J Exp Clin Cancer Res. 2011; 30:96. BioMed Central Full Text
  • [19]Stockwell PA, Chatterjee A, Rodger EJ, Morison IM. DMAP: differential methylation analysis package for RRBS and WGBS data. Bioinformatics. 2014; 30(13):1814-1822.
  • [20]Chatterjee A, Stockwell PA, Horsfield JA, Morison IM, Nakagawa S. Base-resolution DNA methylation landscape of zebrafish brain and liver. Genom Data. 2014; 2:342-344.
  • [21]Chatterjee A, Rodger EJ, Stockwell PA, Weeks RJ, Morison IM. Technical considerations for reduced representation bisulfite sequencing with multiplexed libraries. J Biomed Biotechnol. 2012; 2012:741542.
  • [22]Chatterjee A, Ozaki Y, Stockwell PA, Horsfield JA, Morison IM, Nakagawa S. Mapping the zebrafish brain methylome using reduced representation bisulfite sequencing. Epigenetics. 2013; 8(9):979-989.
  • [23]Martin M. Cutadapt removes adapter sequences from high-throughput sequencing reads. Bioinformatics in Action. 2011;17(1).
  • [24]Langmead B, Trapnell C, Pop M, Salzberg SL. Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol. 2009; 10(3):R25. BioMed Central Full Text
  • [25]Friedlander MR, Mackowiak SD, Li N, Chen W, Rajewsky N. miRDeep2 accurately identifies known and hundreds of novel microRNA genes in seven animal clades. Nucleic Acids Res. 2012; 40(1):37-52.
  • [26]Torrezan GT, Ferreira EN, Nakahata AM, Barros BD, Castro MT, Correa BR et al.. Recurrent somatic mutation in DROSHA induces microRNA profile changes in Wilms tumour. Nat Commun. 2014; 5:4039.
  • [27]Zhang X-F, Li K-K, Gao L, Li S-Z, Chen K, Zhang J-B et al.. miR-191 promotes tumorigenesis of human colorectal cancer through targeting C/EBPβ. Oncotarget. 2015; 6(6):4144-4158.
  • [28]Huang Z, Huang S, Wang Q, Liang L, Ni S, Wang L et al.. MicroRNA-95 promotes cell proliferation and targets sorting Nexin 1 in human colorectal carcinoma. Cancer Res. 2011; 71(7):2582-2589.
  • [29]Yau WL, Lam CSC, Ng L, Chow AKM, Chan STC, Chan JYK et al.. Over-expression of miR-106b promotes cell migration and metastasis in hepatocellular carcinoma by activating epithelial-mesenchymal transition process. PLoS One. 2013; 8(3): Article ID e57882
  • [30]Gyugos M, Lendvai G, Kenessey I, Schlachter K, Halasz J, Nagy P et al.. MicroRNA expression might predict prognosis of epithelial hepatoblastoma. Virchows Arch. 2014; 464(4):419-427.
  • [31]Leichter, AL; Purcell, RV; Sullivan, MJ; Eccles, MR; Chatterjee, A. (2015): Supporting data for "Multi-platform microRNA profiling of hepatoblastoma patients using formalin fixed paraffin embedded archival samples".GigaScience Database. http://dx.doi.org/10.5524/100180
  文献评价指标  
  下载次数:15次 浏览次数:29次