期刊论文详细信息
Lipids in Health and Disease
Decreased APOE-containing HDL subfractions and cholesterol efflux capacity of serum in mice lacking Pcsk9
Ron Korstanje3  Annik Prat1  Bin Deng4  Blake R Peterson5  Ujala Srivastava2  Aleksandra Aljakna2  Seungbum Choi3 
[1]Laboratory of Biochemical Neuroendocrinology, Institut de Recherches Cliniques de Montréal, affiliated to the University of Montreal, Montreal, QC Canada
[2]The Jackson Laboratory, Bar Harbor, ME USA
[3]Graduate School of Biomedical Sciences, University of Maine, Orono, ME USA
[4]Department of Biology/VGN Proteomics Facility, University of Vermont, Burlington, VT USA
[5]Department of Medicinal Chemistry, University of Kansas, Lawrence, KS USA
关键词: Proprotein convertase subtilisin/kexin type 9;    Macrophage foam cell;    Low-density lipoprotein receptor;    Atherosclerotic fatty streak;    Apolipoprotein E;   
Others  :  834240
DOI  :  10.1186/1476-511X-12-112
 received in 2013-05-29, accepted in 2013-07-22,  发布年份 2013
PDF
【 摘 要 】

Background

Studies in animals showed that PCSK9 is involved in HDL metabolism. We investigated the molecular mechanism by which PCSK9 regulates HDL cholesterol concentration and also whether Pcsk9 inactivation might affect cholesterol efflux capacity of serum and atherosclerotic fatty streak volume.

Methods

Mass spectrometry and western blot were used to analyze the level of apolipoprotein E (APOE) and A1 (APOA1). A mouse model overexpressing human LDLR was used to test the effect of high levels of liver LDLR on the concentration of HDL cholesterol and APOE-containing HDL subfractions. Pcsk9 knockout males lacking LDLR and APOE were used to test whether LDLR and APOE are necessary for PCSK9-mediated HDL cholesterol regulation. We also investigated the effects of Pcsk9 inactivation on cholesterol efflux capacity of serum using THP-1 and J774.A1 macrophage foam cells and atherosclerotic fatty streak volume in the aortic sinus of Pcsk9 knockout males fed an atherogenic diet.

Results

APOE and APOA1 were reduced in the same HDL subfractions of Pcsk9 knockout and human LDLR transgenic male mice. In Pcsk9/Ldlr double-knockout mice, HDL cholesterol concentration was lower than in Ldlr knockout mice and higher than in wild-type controls. In Pcsk9/Apoe double-knockout mice, HDL cholesterol concentration was similar to that of Apoe knockout males. In Pcsk9 knockout males, THP-1 macrophage cholesterol efflux capacity of serum was reduced and the fatty streak lesion volume was similar to wild-type controls.

Conclusions

In mice, LDLR and APOE are important factors for PCSK9-mediated HDL regulation. Our data suggest that, although LDLR plays a major role in PCSK9-mediated regulation of HDL cholesterol concentration, it is not the only mechanism and that, regardless of mechanism, APOE is essential. Pcsk9 inactivation decreases the HDL cholesterol concentration and cholesterol efflux capacity in serum, but does not increase atherosclerotic fatty streak volume.

【 授权许可】

   
2013 Choi et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20140715053704397.pdf 928KB PDF download
Figure 7. 45KB Image download
Figure 6. 25KB Image download
Figure 5. 39KB Image download
Figure 4. 32KB Image download
Figure 3. 48KB Image download
Figure 2. 44KB Image download
Figure 1. 36KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

Figure 7.

【 参考文献 】
  • [1]Abifadel M, Bernier L, Dubuc G, Nuel G, Rabes JP, Bonneau J, Marques A, Marduel M, Devillers M, Munnich A, et al.: A PCSK9 variant and familial combined hyperlipidaemia. J Med Genet 2008, 45:780-786.
  • [2]Abifadel M, Rabes JP, Devillers M, Munnich A, Erlich D, Junien C, Varret M, Boileau C: Mutations and polymorphisms in the proprotein convertase subtilisin kexin 9 (PCSK9) gene in cholesterol metabolism and disease. Hum Mutat 2009, 30:520-529.
  • [3]Maxwell KN, Breslow JL: Adenoviral-mediated expression of Pcsk9 in mice results in a low-density lipoprotein receptor knockout phenotype. Proc Natl Acad Sci USA 2004, 101:7100-7105.
  • [4]Poirier S, Mayer G, Benjannet S, Bergeron E, Marcinkiewicz J, Nassoury N, Mayer H, Nimpf J, Prat A, Seidah NG: The proprotein convertase PCSK9 induces the degradation of low density lipoprotein receptor (LDLR) and its closest family members VLDLR and ApoER2. J Biol Chem 2008, 283:2363-2372.
  • [5]Roubtsova A, Munkonda MN, Awan Z, Marcinkiewicz J, Chamberland A, Lazure C, Cianflone K, Seidah NG, Prat A: Circulating proprotein convertase subtilisin/kexin 9 (PCSK9) regulates VLDLR protein and triglyceride accumulation in visceral adipose tissue. Arterioscler Thromb Vasc Biol 2011, 31:785-791.
  • [6]Rashid S, Curtis DE, Garuti R, Anderson NN, Bashmakov Y, Ho YK, Hammer RE, Moon YA, Horton JD: Decreased plasma cholesterol and hypersensitivity to statins in mice lacking Pcsk9. Proc Natl Acad Sci USA 2005, 102:5374-5379.
  • [7]Graham MJ, Lemonidis KM, Whipple CP, Subramaniam A, Monia BP, Crooke ST, Crooke RM: Antisense inhibition of proprotein convertase subtilisin/kexin type 9 reduces serum LDL in hyperlipidemic mice. J Lipid Res 2007, 48:763-767.
  • [8]Chan JC, Piper DE, Cao Q, Liu D, King C, Wang W, Tang J, Liu Q, Higbee J, Xia Z, et al.: A proprotein convertase subtilisin/kexin type 9 neutralizing antibody reduces serum cholesterol in mice and nonhuman primates. Proc Natl Acad Sci USA 2009, 106:9820-9825.
  • [9]Mokuno H, Yamada N, Shimano H, Ishibashi S, Mori N, Takahashi K, Oka T, Yoon TH, Takaku F: The enhanced cellular uptake of very-low-density lipoprotein enriched in apolipoprotein E. Biochim Biophys Acta 1991, 1082:63-70.
  • [10]Rosales C, Tang D, Gillard BK, Courtney HS, Pownall HJ: Apolipoprotein E mediates enhanced plasma high-density lipoprotein cholesterol clearance by low-dose streptococcal serum opacity factor via hepatic low-density lipoprotein receptors in vivo. Arterioscler Thromb Vasc Biol 2011, 31:1834-1841.
  • [11]Gordon V, Innerarity TL, Mahley RW: Formation of cholesterol- and apoprotein E-enriched high density lipoproteins in vitro. J Biol Chem 1983, 258:6202-6212.
  • [12]Koo C, Innerarity TL, Mahley RW: Obligatory role of cholesterol and apolipoprotein E in the formation of large cholesterol-enriched and receptor-active high density lipoproteins. J Biol Chem 1985, 260:11934-11943.
  • [13]Mahley RW: Apolipoprotein E: cholesterol transport protein with expanding role in cell biology. Science 1988, 240:622-630.
  • [14]Kozarsky KF, Donahee MH, Rigotti A, Iqbal SN, Edelman ER, Krieger M: Overexpression of the HDL receptor SR-BI alters plasma HDL and bile cholesterol levels. Nature 1997, 387:414-417.
  • [15]Rigotti A, Trigatti BL, Penman M, Rayburn H, Herz J, Krieger M: A targeted mutation in the murine gene encoding the high density lipoprotein (HDL) receptor scavenger receptor class B type I reveals its key role in HDL metabolism. Proc Natl Acad Sci USA 1997, 94:12610-12615.
  • [16]Lalanne F, Lambert G, Amar MJ, Chetiveaux M, Zair Y, Jarnoux AL, Ouguerram K, Friburg J, Seidah NG, Brewer HB Jr, et al.: Wild-type PCSK9 inhibits LDL clearance but does not affect apoB-containing lipoprotein production in mouse and cultured cells. J Lipid Res 2005, 46:1312-1319.
  • [17]Lee JY, Parks JS: ATP-binding cassette transporter AI and its role in HDL formation. Curr Opin Lipidol 2005, 16:19-25.
  • [18]Zhang J, Cai S, Peterson BR, Kris-Etherton PM, Heuvel JP: Development of a cell-based, high-throughput screening assay for cholesterol efflux using a fluorescent mimic of cholesterol. Assay Drug Dev Technol 2011, 9:136-146.
  • [19]Mazzone T, Reardon C: Expression of heterologous human apolipoprotein E by J774 macrophages enhances cholesterol efflux to HDL3. J Lipid Res 1994, 35:1345-1353.
  • [20]Khera AV, Cuchel M, de la Llera-Moya M, Rodrigues A, Burke MF, Jafri K, French BC, Phillips JA, Mucksavage ML, Wilensky RL, et al.: Cholesterol efflux capacity, high-density lipoprotein function, and atherosclerosis. N Engl J Med 2011, 364:127-135.
  • [21]Qian YW, Schmidt RJ, Zhang Y, Chu S, Lin A, Wang H, Wang X, Beyer TP, Bensch WR, Li W, et al.: Secreted PCSK9 downregulates low density lipoprotein receptor through receptor-mediated endocytosis. J Lipid Res 2007, 48:1488-1498.
  • [22]Zaid A, Roubtsova A, Essalmani R, Marcinkiewicz J, Chamberland A, Hamelin J, Tremblay M, Jacques H, Jin W, Davignon J, et al.: Proprotein convertase subtilisin/kexin type 9 (PCSK9): hepatocyte-specific low-density lipoprotein receptor degradation and critical role in mouse liver regeneration. Hepatology 2008, 48:646-654.
  • [23]Stein EA, Swergold GD: Potential of proprotein convertase subtilisin/kexin type 9 based therapeutics. Curr Atheroscler Rep 2013, 15:310.
  • [24]Stein EA, Gipe D, Bergeron J, Gaudet D, Weiss R, Dufour R, Wu R, Pordy R: Effect of a monoclonal antibody to PCSK9, REGN727/SAR236553, to reduce low-density lipoprotein cholesterol in patients with heterozygous familial hypercholesterolaemia on stable statin dose with or without ezetimibe therapy: a phase 2 randomised controlled trial. Lancet 2012, 380:29-36.
  • [25]Raal F, Scott R, Somaratne R, Bridges I, Li G, Wasserman SM, Stein EA: Low-density lipoprotein cholesterol-lowering effects of AMG 145, a monoclonal antibody to proprotein convertase subtilisin/kexin type 9 serine protease in patients with heterozygous familial hypercholesterolemia: the Reduction of LDL-C with PCSK9 Inhibition in Heterozygous Familial Hypercholesterolemia Disorder (RUTHERFORD) randomized trial. Circulation 2012, 126:2408-2417.
  • [26]Mahley RW, Huang Y, Weisgraber KH: Putting cholesterol in its place: apoE and reverse cholesterol transport. J Clin Invest 2006, 116:1226-1229.
  • [27]Mahley RW, Innerarity TL, Bersot TP, Lipson A, Margolis S: Alterations in human high-density lipoproteins, with or without increased plasma-cholesterol, induced by diets high in cholesterol. Lancet 1978, 2:807-809.
  • [28]Weisgraber KH, Mahley RW: Subfractionation of human high density lipoproteins by heparin-Sepharose affinity chromatography. J Lipid Res 1980, 21:316-325.
  • [29]Denis M, Marcinkiewicz J, Zaid A, Gauthier D, Poirier S, Lazure C, Seidah NG, Prat A: Gene Inactivation of PCSK9 Reduces Atherosclerosis in Mice. Circulation 2012, 125:894-901.
  • [30]Canuel M, Sun X, Asselin MC, Paramithiotis E, Prat A, Seidah NG: Proprotein Convertase Subtilisin/Kexin Type 9 (PCSK9) Can Mediate Degradation of the Low Density Lipoprotein Receptor-Related Protein 1 (LRP-1). PLoS One 2013, 8:e64145.
  • [31]Nishina PM, Verstuyft J, Paigen B: Synthetic low and high fat diets for the study of atherosclerosis in the mouse. J Lipid Res 1990, 31:859-869.
  • [32]Su Z, Cox A, Shen Y, Stylianou IM, Paigen B: Farp2 and Stk25 are candidate genes for the HDL cholesterol locus on mouse chromosome 1. Arterioscler Thromb Vasc Biol 2009, 29:107-113.
  • [33]Su Z, Leduc MS, Korstanje R, Paigen B: Untangling HDL quantitative trait loci on mouse chromosome 5 and identifying Scarb1 and Acads as the underlying genes. J Lipid Res 2010, 51:2706-2713.
  • [34]Mora S, Rifai N, Buring JE, Ridker PM: Fasting compared with nonfasting lipids and apolipoproteins for predicting incident cardiovascular events. Circulation 2008, 118:993-1001.
  • [35]Warnick GR, Benderson J, Albers JJ: Dextran sulfate-Mg2+ precipitation procedure for quantitation of high-density-lipoprotein cholesterol. Clin Chem 1982, 28:1379-1388.
  • [36]Li Z, McNamara JR, Ordovas JM, Schaefer EJ: Analysis of high density lipoproteins by a modified gradient gel electrophoresis method. J Lipid Res 1994, 35:1698-1711.
  • [37]Spiess PC, Deng B, Hondal RJ, Matthews DE, van der Vliet A: Proteomic profiling of acrolein adducts in human lung epithelial cells. J Proteomics 2011, 74:2380-2394.
  • [38]Ramakers C, Ruijter JM, Deprez RH, Moorman AF: Assumption-free analysis of quantitative real-time polymerase chain reaction (PCR) data. Neurosci Lett 2003, 339:62-66.
  • [39]Pfaffl MW, Horgan GW, Dempfle L: Relative expression software tool (REST) for group-wise comparison and statistical analysis of relative expression results in real-time PCR. Nucleic Acids Res 2002, 30:e36.
  • [40]Mottram LF, Boonyarattanakalin S, Kovel RE, Peterson BR: The Pennsylvania Green Fluorophore: a hybrid of Oregon Green and Tokyo Green for the construction of hydrophobic and pH-insensitive molecular probes. Org Lett 2006, 8:581-584.
  • [41]Paigen B, Morrow A, Brandon C, Mitchell D, Holmes P: Variation in susceptibility to atherosclerosis among inbred strains of mice. Atherosclerosis 1985, 57:65-73.
  • [42]van Gent CM, Emeis JJ: Histochemistry of free and esterified cholesterol in human atherosclerotic arteries. Prog Biochem Pharmacol 1977, 13:262-267.
  文献评价指标  
  下载次数:8次 浏览次数:13次