期刊论文详细信息
Journal of Neuroinflammation
Who let the dogs out?: detrimental role of Galectin-3 in hypoperfusion-induced retinal degeneration
Linnéa Taylor1  Tomas Deierborg2  Karin Arnér1  Oscar Manouchehrian1 
[1] Department of Ophthalmology, BMC, Lund University, Klinikgatan 26, Lund S-22184, Sweden;Experimental Neuroinflammation Laboratory, BMC, Lund University, Klinikgatan 26, Lund S-22184, Sweden
关键词: Ischemia;    Gliosis;    Neuroinflammation;    Müller cells;    Galectin 3;    Microglia;    Retina;   
Others  :  1222004
DOI  :  10.1186/s12974-015-0312-x
 received in 2014-11-25, accepted in 2015-04-28,  发布年份 2015
PDF
【 摘 要 】

Background

Retinal ischemia results in a progressive degeneration of neurons and a pathological activation of glial cells, resulting in vision loss. In the brain, progressive damage after ischemic insult has been correlated to neuroinflammatory processes involving microglia. Galectin-3 has been shown to mediate microglial responses to ischemic injury in the brain. Therefore, we wanted to explore the contribution of Galectin-3 (Gal-3) to hypoperfusion-induced retinal degeneration in mice.

Methods

Gal-3 knockout (Gal-3 KO) and wildtype (WT) C57BL/6 mice were subjected to chronic cerebral hypoperfusion by bilateral narrowing of the common carotid arteries using metal coils resulting in a 30% reduction of blood flow. Sham operated mice served as controls. After 17 weeks, the mice were sacrificed and the eyes were analyzed for retinal architecture, neuronal cell survival, and glial reactivity using morphological staining and immunohistochemistry.

Results

Hypoperfusion caused a strong increase in Gal-3 expression and microglial activation in WT mice, coupled with severe degenerative damage to all retinal neuronal subtypes, remodeling of the retinal lamination and Müller cell gliosis. In contrast, hypoperfused Gal-3 KO mice displayed a retained laminar architecture, a significant preservation of photoreceptors and ganglion cell neurons, and an attenuation of microglial and Müller cell activation.

Conclusion

Moderate cerebral blood flow reduction in the mouse results in severe retinal degenerative damage. In mice lacking Gal-3 expression, pathological changes are significantly attenuated. Gal-3 is thereby a potential target for treatment and prevention of hypoperfusion-induced retinal degeneration and a strong candidate for further research as a factor behind retinal degenerative disease.

【 授权许可】

   
2015 Manouchehrian et al.; licensee BioMed Central.

【 预 览 】
附件列表
Files Size Format View
20150804164714884.pdf 4210KB PDF download
Figure 11. 117KB Image download
Figure 10. 150KB Image download
Figure 9. 30KB Image download
Figure 8. 98KB Image download
Figure 7. 29KB Image download
Figure 6. 108KB Image download
Figure 5. 114KB Image download
Figure 4. 16KB Image download
Figure 3. 109KB Image download
Figure 2. 79KB Image download
Figure 1. 172KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

Figure 7.

Figure 8.

Figure 9.

Figure 10.

Figure 11.

【 参考文献 】
  • [1]Kalesnykas G, Tuulos T, Uusitalo H, Jolkkonen J: Neurodegeneration and cellular stress in the retina and optic nerve in rat cerebral ischemia and hypoperfusion models. Neuroscience 2008, 155(3):937-47.
  • [2]Shibata M, Ohtani R, Ihara M, Tomimoto H: White matter lesions and glial activation in a novel mouse model of chronic cerebral hypoperfusion. Stroke 2004, 35:2598-603.
  • [3]Yamamoto H, Schimdt-Kastner R, Hamasaki DI, Yamamoto H, Parel JM: Complex neurodegeneration in retina following moderate ischemia induced by bilateral common carotid artery occlusion in Wistar rats. Exp Eye Res 2006, 82(5):767-79.
  • [4]Davidson CM, Pappas BA, Stevens WD, Fortin T, Bennett SA: Chronic cerebral hypoperfusion: loss of pupillary reflex, visual impairment and retinal neurodegeneration. Brain Res 2000, 859(1):96-103.
  • [5]Stevens WD, Fortin T, Pappas BA: Retinal and optic nerve degeneration after chronic carotid ligation: time course and role of light exposure. Stroke 2002, 33:1107-12.
  • [6]Chidlow G, Holman MC, Wood JO, Casson RJ: Spatiotemporal characterization of optic nerve degeneration after chronic hypoperfusion in the rat. Invest Ophtalmol Vis Sci 2010, 51(3):1483-97.
  • [7]Kaja S, Yang SH, Wei J, Fujitani K, Liu R, Brun-Zinkernagel AM, et al.: Estrogen protects the inner retina from apoptosis and ischemia-induced loss of Vesl-1L/Homer 1c immunoreactive synaptic connections. Invest Opthalmol Vis Sci 2003, 44(7):3155-62.
  • [8]Shin T: The pleiotropic effects of galectin-3 in neuroinflammation: a review. Acta Histochem 2013, 115(5):407-11.
  • [9]Jin R, Yang G, Li G: Inflammatory mechanisms in ischemic stroke: role of inflammatory cells. J Leukoc Biol 2010, 87(5):779-89.
  • [10]Patel AR, Ritzel R, McCullough LD, Liu F: Microglia and ischemic stroke: a double-edged sword. Int J Physiol Pathophysiol Pharmacol 2013, 5(2):73-90.
  • [11]Lalancette-Hébert M, Swarup V, Beaulieu JM, Bohacek I, Abdelhamid E, Weng YC, et al.: Galectin-3 is required for resident microglia activation and proliferation in response to ischemic injury. J Neurosci 2012, 32(30):10383-95.
  • [12]Yan YP, Lang BT, Vemuganti R, Dempsey RJ: Galectin-3 mediates post-ischemic tissue remodeling. Brain Res 2009, 1288:116-24.
  • [13]Boza-Serrano A, Reyes JF, Rey NL, Leffler H, Bousset L, Nilsson U, et al.: The role of Galectin-3 in α-synuclein-induced microglial activation. Acta Neuropathol Commun 2014, 2(1):156.
  • [14]Uehara F, Ohba N, Ozawa M: Isolation and characterization of galectins in the mammalian retina. Invest Ophthalmol Vis Sci 2001, 42(10):2164-72.
  • [15]Canning P, Glenn JV, Hsu DK, Liu FT, Gardiner TA, Stitt AW: Inhibition of advanced glycation and absence of galectin-3 prevent blood-retinal barrier dysfunction during short-term diabetes. Exp Diabetes Res 2007, 2007:51837.
  • [16]Colnot C, Fowlis D, Ripoche MA, Bouchaert I, Poirier F: Embryonic implantation in 1/galectin 3 double mutant mice. Dev Dyn 1998, 211(4):306-13.
  • [17]Engelsberg K, Ghosh F: Transplantation of cultured adult porcine neuroretina. Cell Transpl 2007, 16:31-9.
  • [18]Taylor L, Arnér K, Engelsberg K, Ghosh F: Effects of glial cell line-derived neurotrophic factor on the cultured adult full- thickness porcine retina. Curr Eye Res 2013, 38:503-15.
  • [19]Taylor L, Moran D, Arnér K, Warrant E, Ghosh F: Stretch to see: lateral tension strongly determines cell survival in long-term cultures of adult porcine retina. IOVS 2013, 54:1845-56.
  • [20]Taylor L, Arnér K, Taylor IH, Ghosh F: Feet on the ground: physical support of the inner retina is a strong determinant for cell survival and structural preservation in vitro. IOVS 2014, 55:2200-13.
  • [21]Taylor L, Arnér K, Ghosh F: First responders: dynamics of pre-gliotic Müller. Cell responses in the isolated adult rat retina. Curr Eye Res 2014, 11:1-16.
  • [22]Lewis GP, Linberg KA, Fisher SK: Neurite outgrowth from bipolar and horizontal cells after experimental retinal detachment. Invest Ophthalmol Vis Sci 1998, 39:424-34.
  • [23]Farkas E, Luiten PG, Bari F: Permanent, bilateral common carotid artery occlusion in the rat: a model for chronic cerebral hypoperfusion-related neurodegenerative diseases. Brain Res Rev 2007, 54(1):162-80.
  • [24]Osborne NN, Casson RJ, Wood JP, Chidlow G, Graham M, Melena J: Retinal ischemia: mechanisms of damage and potential therapeutic strategies. Prog Retin Eye Res 2004, 23(1):91-147.
  • [25]Osborne NN, Block F, Sontag KH: Reduction of ocular blood flow results in glial fibrillary acidic protein (GFAP) expression in rat retinal Müller cells. Vis Neurosci 1991, 7:637-9.
  • [26]Sivilia S, Guiliani A, Fernández M, Turba ME, Forni M, Massella A, et al.: Intravitreal NGF administration counteracts retina degeneration after permanent carotid artery occlusion in rat. BMC Neurosci 2009, 10:52. BioMed Central Full Text
  • [27]Barnett N, Osbourne N: Prolonged bilateral carotid artery occlusion induces electrophysiological and immunohistochemical changes to the rat retina without causing histological damage. Exp Eye Res 1995, 61(1):83-90.
  • [28]Rosenberg GA: Matrix metalloproteinases in neuroinflammation. Glia 2002, 39:279-91.
  • [29]Kim JB, Sig Choi J, Yu YM, Nam K, Piao CS, Kim SW, et al.: HMGB1, a novel cytokine-like mediator linking acute neuronal death and delayed neuroinflammation in the postischemic brain. J Neurosci 2006, 26(24):6413-21.
  • [30]Candelario-Jalil E, Yang Y, Rosenberg GA: Diverse roles of matrix metalloproteinases and tissue inhibitors of metalloproteinases in neuroinflammation and cerebral ischemia. Neuroscience 2009, 158(3):983-94.
  • [31]Wesley UV, Vemuganti R, Ayvaci ER, Dempsey RJ: Galectin-3 enhances angiogenic and migratory potential of microglial cells via modulation of integrin linked kinase signaling. Brain Res 2013, 1496:1-9.
  • [32]Kim J, Moon C, Ahn M, Joo HG, Jin JK, Shin T: Immunohistochemical localization of galectin-3 in the pig retina during postnatal development. Mol Vis 2009, 15:1971-6.
  • [33]Spertus AD, Slakter JS, Weissman SS, Henkind P: Experimental carotid occlusion: funduscopic and fluorescein angiographic findings. Br J Ophthalmol 1984, 68(1):47-57.
  • [34]Yang G, Kitagawa K, Matsushita K, Mabuchi T, Yagita Y, Yanagihara T, et al.: C57BL/6 strain is most susceptible to cerebral ischemia following bilateral common carotid occlusion among seven mouse strains: selective neuronal death in the murine transient forebrain ischemia. Brain Res 1997, 752(1–2):209-18.
  • [35]Olsson T, Wieloch T, Smith ML: Brain damage in a mouse model of global cerebral ischemia. Effect of NMDA receptor blockade. Brain Res 2003, 982(2):260-9.
  • [36]Olsson T, Hansson O, Nylandsted J, Jäättelä M, Smith ML, Wieloch T: Lack of neuroprotection by heat shock protein 70 overexpression in a mouse model of global cerebral ischemia. Exp Brain Res 2004, 154(4):442-9.
  • [37]Kim BJ, Braun TA, Wordinger RJ, Clark AF: Progressive morphological changes and impaired retinal function associated with temporal regulation of gene expression after retinal ischemia/reperfusion injury in mice. Mol Neurodegener 2013, 8:21. BioMed Central Full Text
  • [38]Danylkova NO, Pomeranz HD, Alcala SR, McLoon LK: Histological and morphometric evaluation of transient retinal and optic nerve ischemia in rat. Brain Res 2006, 1096(1):20-9.
  • [39]Hirrlinger PG, Ulbricht E, Iandiev I, Reichenbach A, Pannicke T: Alterations in protein expression and membrane properties during Müller cell gliosis in a murine model of transient retinal ischemia. Neurosci Lett 2010, 472(1):73-8.
  • [40]Izumi Y, Hammerman Seth B, Kirby Charity O, Benz Ann M, Olney John W, Zorumski CF: Involvement of glutamate in ischemic neurodegeneration in isolated retina. Vis Neurosci 2003, 20:97-107.
  • [41]Bringmann A, Pannicke T, Grosche J, Francke M, Wiedemann P, Skatchkov SN, et al.: Müller cells in the healthy and diseased retina. Prog Retin Eye Res 2006, 25(4):397-424.
  • [42]Wang Q-P, Jammoul F, Duboc A, et al.: Treatment of epilepsy: the GABA-transaminase inhibitor, vigabatrin, induces neuronal plasticity in the mouse retina. Eur J Neurosci 2008, 27(8):2177-87.
  • [43]Ito D, Tanaka K, Suzuki S, Dembo T, Fukuuchi Y: Enhanced expression of Iba1, ionized calcium-binding adapter molecule 1, after transient focal cerebral ischemia in rat brain. Stroke 2001, 32(5):1208-15.
  • [44]Lambertsen KL, Deierborg T, Gregersen R, Clausen BH, Wirenfeldt M, Nielsen HH, et al.: Differences in origin of reactive microglia in bone marrow chimeric mouse and rat after transient global ischemia. J Neuropathol Exp Neurol 2011, 70(6):481-94.
  • [45]Gerhardinger C, Costa MB, Coulombe MC, Toth I, Hoehn T, Grosu P: Expression of acute-phase response proteins in retinal Müller cells in diabetes. Invest Ophthalmol Vis Sci 2005, 46(1):349-57.
  • [46]Zacks DN: Gene transcription profile of the detached retina (an AOS thesis). Trans Am Ophthalmol Soc 2009, 107:343-82.
  • [47]Rotshenker S: The role of Galectin-3/MAC-2 in the activation of the innate- immune function of phagocytosis in microglia in injury and disease. J Mol Neurosci 2009, 39:99-103.
  • [48]Caberoy NB, Alvarado G, Bigcas JL, Li W: Galectin-3 is a new MerTK-specific eat-me signal. J Cell Physiol 2012, 227(2):401-7.
  • [49]Hughes RC: Secretion of the galectin family of mammalian carbohydrate-binding proteins. Biochim Biophys Acta 1999, 1473(1):172-85.
  • [50]Burguillos MA, Svensson M, Schulte T, Boza-Serrano A, Garcia-Quintanilla A, Kavanagh E, et al.: Microglia-secreted galectin-3 acts as a toll-receptor 4 ligand and contributes to microglial activation. Cell Reports 2015, 10:1-13.
  • [51]Ravichandran KS, Lorenz U: Engulfment of apoptotic cells: signals for a good meal. Nat Rev Immunol 2007, 7(12):964-74.
  • [52]Caberoy NB, Maiguel D, Kim Y, Li W: Identification of tubby and tubby-like protein 1 as eat-me signals by phage display. Exp Cell Res 2010, 316(2):245-57.
  • [53]Rotshenker S, Reichert F, Gitik M, Haklai R, Elad-Sfadia G, Kloog Y: Galectin-3/MAC-2, Ras and PI3K activate complement receptor-3 and scavenger receptor-AI/II mediated myelin phagocytosis in microglia. Glia 2008, 56(15):1607-13.
  • [54]Nguyen JV, Soto I, Kim KY, Bushong EA, Oglesby E, Valiente-Soriano FJ, et al.: Myelination transition zone astrocytes are constitutively phagocytic and have synuclein dependent reactivity in glaucoma. Proc Natl Acad Sci U S A 2011, 108:1176-81.
  • [55]Sävman K, Heyes MP, Svedin P, Karlsson A: Microglia/macrophage-derived inflammatory mediators galectin-3 and quinolinic acid are elevated in cerebrospinal fluid from newborn infants after birth asphyxia. Transl Stroke Res 2013, 4(2):228-35.
  • [56]Wang M, Wong WT: Microglia-Müller cell interactions in the retina. Adv Exp Med Biol 2014, 801:333-8.
  • [57]Harada T, Harada C, Kohsaka S, Wada E, Yoshida K, Ohno S, et al.: Microglia-Müller glia cell interactions control neurotrophic factor production during light-induced retinal degeneration. J Neurosci 2002, 22(21):9228-36.
  • [58]Block ML, Hong JS: Microglia and inflammation-mediated neurodegeneration: multiple triggers with a common mechanism. Prog Neurobiol 2005, 76(2):77-98.
  • [59]Wang M, Ma W, Zhao L, Fariss RN, Wong WT: Adaptive Müller cell responses to microglial activation mediate neuroprotection and coordinate inflammation in the retina. J Neuroinflammation 2011, 8:173. BioMed Central Full Text
  • [60]Jeon SB, Yoon HJ, Chang CY, Koh HS, Jeon SH, Park EJ: Galectin-3 exerts cytokine-like regulatory actions through the JAK-STAT pathway. J Immunol 2010, 185(11):7037-46.
  • [61]Boje KM, Arora PK: Microglial-produced nitric oxide and reactive nitrogen oxides mediate neuronal cell death. Brain Res 1992, 587(2):250-6.
  文献评价指标  
  下载次数:101次 浏览次数:19次