期刊论文详细信息
Journal of Neuroinflammation
Neuropsychiatric systemic lupus erythematosus persists despite attenuation of systemic disease in MRL/lpr mice
Chaim Putterman2  Maria Gulinello1  Leal C. Herlitz4  Jessica Doerner3  Jing Wen3  Ariel D. Stock3 
[1] Behavioral Core Facility, Department of Neuroscience, Albert Einstein College of Medicine, Bronx 10461, NY, USA;Division of Rheumatology, Albert Einstein College of Medicine, F701N, 1300 Morris Park Ave., Bronx 10461, NY, USA;The Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx 10461, NY, USA;The Department of Pathology, Cleveland Clinic, Cleveland 44195, OH, USA
关键词: Autoantibodies;    Bone marrow transplantation;    Neuropsychiatric SLE;    SLE;    Lupus;   
Others  :  1234439
DOI  :  10.1186/s12974-015-0423-4
 received in 2015-08-30, accepted in 2015-10-27,  发布年份 2015
【 摘 要 】

Background

Systemic lupus erythematosus (SLE) is a prototypical autoimmune disease marked by both B and T cell hyperactivity which commonly affects the joints, skin, kidneys, and brain. Neuropsychiatric disease affects about 40 % of SLE patients, most frequently manifesting as depression, memory deficits, and general cognitive decline. One important and yet unresolved question is whether neuropsychiatric SLE (NPSLE) is a complication of systemic autoimmunity or whether it is primarily driven by brain-intrinsic factors.

Methods

To dissect the relative contributions of the central nervous system from those of the hematopoietic compartment, we generated bone marrow chimeras between healthy control (MRL/+) and lupus-prone MRL/Tnfrsf6 lpr/lpr mice (MRL/+ → MRL/lpr), as well as control chimeras. After bone marrow reconstitution, mice underwent extensive behavioral testing, analysis of brain tissue, and histological assessment.

Results

Despite transfer of healthy MRL/+ bone marrow and marked attenuation of systemic disease, we found that MRL/+ → MRL/lpr mice had a behavioral phenotype consisting of depressive-like behavior and visuospatial memory deficits, comparable to MRL/lpr → MRL/lpr control transplanted mice and the behavioral profile previously established in MRL/lpr mice. Moreover, MRL/+ → MRL/lpr chimeric mice displayed increased brain RANTES expression, neurodegeneration, and cellular infiltration in the choroid plexus, as well as blood brain barrier disruption, all in the absence of significant systemic autoimmunity.

Conclusions

Chimeric MRL/+ → MRL/lpr mice displayed no attenuation of the behavioral phenotype found in MRL/lpr mice, despite normalized serum autoantibodies and conserved renal function. Therefore, neuropsychiatric disease in the MRL/lpr lupus-prone strain of mice can occur absent any major contributions from systemic autoimmunity.

【 授权许可】

   
2015 Stock et al.

附件列表
Files Size Format View
Fig. 6. 132KB Image download
Fig. 5. 76KB Image download
Fig. 4. 159KB Image download
Fig. 3. 54KB Image download
Fig. 2. 70KB Image download
Fig. 1. 53KB Image download
Fig. 6. 132KB Image download
Fig. 5. 76KB Image download
Fig. 4. 159KB Image download
Fig. 3. 54KB Image download
Fig. 2. 70KB Image download
Fig. 1. 53KB Image download
【 图 表 】

Fig. 1.

Fig. 2.

Fig. 3.

Fig. 4.

Fig. 5.

Fig. 6.

Fig. 1.

Fig. 2.

Fig. 3.

Fig. 4.

Fig. 5.

Fig. 6.

【 参考文献 】
  • [1]Kamal A, Khamashta M: The efficacy of novel B cell biologics as the future of SLE treatment: a review. Autoimmun Rev 2014, 13(11):1094-101.
  • [2]Frampton G, Moriya S, Pearson JD, Isenberg DA, Ward FJ, Smith TA, et al.: Identification of candidate endothelial cell autoantigens in systemic lupus erythematosus using a molecular cloning strategy: a role for ribosomal P protein P0 as an endothelial cell autoantigen. Rheumatology (Oxford) 2000, 39(10):1114-20.
  • [3]Valesini G, Alessandri C, Celestino D, Conti F: Anti-endothelial antibodies and neuropsychiatric systemic lupus erythematosus. Ann N Y Acad Sci 2006, 1069:118-28.
  • [4]Zandman-Goddard G, Chapman J, Shoenfeld Y: Autoantibodies involved in neuropsychiatric SLE and antiphospholipid syndrome. Semin Arthritis Rheum 2007, 36(5):297-315.
  • [5]DeGiorgio LA, Konstantinov KN, Lee SC, Hardin JA, Volpe BT, Diamond B: A subset of lupus anti-DNA antibodies cross-reacts with the NR2 glutamate receptor in systemic lupus erythematosus. Nat Med 2001, 7(11):1189-93.
  • [6]Bonfa E, Golombek SJ, Kaufman LD, Skelly S, Weissbach H, Brot N, et al.: Association between lupus psychosis and anti-ribosomal P protein antibodies. N Engl J Med 1987, 317(5):265-71.
  • [7]Alexander JJ, Jacob A, Bao L, Macdonald RL, Quigg RJ: Complement-dependent apoptosis and inflammatory gene changes in murine lupus cerebritis. J Immunol 2005, 175(12):8312-9.
  • [8]Stock AD, Wen J, Putterman C: Neuropsychiatric lupus, the blood brain barrier, and the TWEAK/Fn14 pathway. Front Immunol 2013, 4:484.
  • [9]Meszaros ZS, Perl A, Faraone SV: Psychiatric symptoms in systemic lupus erythematosus: a systematic review. J Clin Psychiatry 2012, 73(7):993-1001.
  • [10]Gao HX, Campbell SR, Cui MH, Zong P, Hee-Hwang J, Gulinello M, et al.: Depression is an early disease manifestation in lupus-prone MRL/lpr mice. J Neuroimmunol 2009, 207(1–2):45-56.
  • [11]Gulinello M, Putterman C: The MRL/lpr mouse strain as a model for neuropsychiatric systemic lupus erythematosus. J Biomed Biotechnol 2011, 2011:207504.
  • [12]Wen J, Xia Y, Stock A, Michaelson JS, Burkly LC, Gulinello M, et al.: Neuropsychiatric disease in murine lupus is dependent on the TWEAK/Fn14 pathway. J Autoimmun 2013, 43:44-54.
  • [13]Tomita M, Holman BJ, Santoro TJ: Aberrant cytokine gene expression in the hippocampus in murine systemic lupus erythematosus. Neurosci Lett 2001, 302(2–3):129-32.
  • [14]James WG, Hutchinson P, Bullard DC, Hickey MJ: Cerebral leucocyte infiltration in lupus-prone MRL/MpJ-fas lpr mice—roles of intercellular adhesion molecule-1 and P-selectin. Clin Exp Immunol 2006, 144(2):299-308.
  • [15]Theofilopoulos AN, Balderas RS, Gozes Y, Aguado MT, Hang LM, Morrow PR, et al.: Association of lpr gene with graft-vs.-host disease-like syndrome. J Exp Med 1985, 162(1):1-18.
  • [16]Andrews BS, Eisenberg RA, Theofilopoulos AN, Izui S, Wilson CB, McConahey PJ, et al.: Spontaneous murine lupus-like syndromes. Clinical and immunopathological manifestations in several strains. J Exp Med 1978, 148(5):1198-215.
  • [17]Deocharan B, Zhou Z, Antar K, Siconolfi-Baez L, Angeletti RH, Hardin J, et al.: Alpha-actinin immunization elicits anti-chromatin autoimmunity in nonautoimmune mice. J Immunol 2007, 179(2):1313-21.
  • [18]Xia Y, Campbell SR, Broder A, Herlitz L, Abadi M, Wu P, et al.: Inhibition of the TWEAK/Fn14 pathway attenuates renal disease in nephrotoxic serum nephritis. Clin Immunol 2012, 145(2):108-21.
  • [19]Gao HX, Sanders E, Tieng AT, Putterman C: Sex and autoantibody titers determine the development of neuropsychiatric manifestations in lupus-prone mice. J Neuroimmunol 2010, 229(1–2):112-22.
  • [20]Gulinello M, Gertner M, Mendoza G, Schoenfeld BP, Oddo S, LaFerla F, et al.: Validation of a 2-day water maze protocol in mice. Behav Brain Res 2009, 196(2):220-7.
  • [21]Augustsson H, Meyerson BJ: Exploration and risk assessment: a comparative study of male house mice (Mus musculus musculus) and two laboratory strains. Physiol Behav 2004, 81(4):685-98.
  • [22]Choleris E, Thomas AW, Kavaliers M, Prato FS: A detailed ethological analysis of the mouse open field test: effects of diazepam, chlordiazepoxide and an extremely low frequency pulsed magnetic field. Neurosci Biobehav Rev 2001, 25(3):235-60.
  • [23]Ennaceur A, Delacour J: A new one-trial test for neurobiological studies of memory in rats. 1: behavioral data. Behav Brain Res 1988, 31(1):47-59.
  • [24]Shukitt-Hale B, Casadesus G, Cantuti-Castelvetri I, Joseph JA: Effect of age on object exploration, habituation, and response to spatial and nonspatial change. Behav Neurosci 2001, 115(5):1059-64.
  • [25]Abelaira HM, Reus GZ, Quevedo J: Animal models as tools to study the pathophysiology of depression. Rev Bras Psiquiatr 2013, 35(Suppl 2):S112-20.
  • [26]Castagne V, Moser P, Roux S, Porsolt RD. Rodent models of depression: forced swim and tail suspension behavioral despair tests in rats and mice. Curr Protoc Neurosci. 2011;Chapter 8:Unit 8 10A.
  • [27]Ballok DA, Ma X, Denburg JA, Arsenault L, Sakic B: Ibuprofen fails to prevent brain pathology in a model of neuropsychiatric lupus. J Rheumatol 2006, 33(11):2199-213.
  • [28]Fragoso-Loyo H, Cabiedes J, Orozco-Narvaez A, Davila-Maldonado L, Atisha-Fregoso Y, Diamond B, et al.: Serum and cerebrospinal fluid autoantibodies in patients with neuropsychiatric lupus erythematosus. Implications for diagnosis and pathogenesis. PLoS One 2008., 3(10) Article ID e3347
  • [29]Lapteva L, Nowak M, Yarboro CH, Takada K, Roebuck-Spencer T, Weickert T, et al.: Anti-N-methyl-D-aspartate receptor antibodies, cognitive dysfunction, and depression in systemic lupus erythematosus. Arthritis Rheum 2006, 54(8):2505-14.
  • [30]Abbott NJ, Mendonça LLF, Dolman DEM: The blood–brain barrier in systemic lupus erythematosus. Lupus 2003, 12(12):908-15.
  • [31]Salahuddin TS, Kalimo H, Johansson BB, Olsson Y: Observations on exudation of fibronectin, fibrinogen and albumin in the brain after carotid infusion of hyperosmolar solutions. An immunohistochemical study in the rat indicating long lasting changes in the brain microenvironment and multifocal nerve cell injuries. Acta Neuropathol 1988, 76(1):1-10.
  • [32]Schmued LC, Stowers CC, Scallet AC, Xu L: Fluoro-Jade C results in ultra high resolution and contrast labeling of degenerating neurons. Brain Res 2005, 1035(1):24-31.
  • [33]Doerner JL, Wen J, Xia Y, Paz KB, Schairer D, Wu L, et al.: TWEAK/Fn14 signaling involvement in the pathogenesis of cutaneous disease in the MRL/lpr model of spontaneous lupus. J Invest Dermatol 2015, 135(8):1986-95.
  • [34]Chalmers SA, Chitu V, Herlitz LC, Sahu R, Stanley ER, Putterman C: Macrophage depletion ameliorates nephritis induced by pathogenic antibodies. J Autoimmun 2015, 57:42-52.
  • [35]Fragoso-Loyo H, Richaud-Patin Y, Orozco-Narvaez A, Davila-Maldonado L, Atisha-Fregoso Y, Llorente L, et al.: Interleukin-6 and chemokines in the neuropsychiatric manifestations of systemic lupus erythematosus. Arthritis Rheum 2007, 56(4):1242-50.
  • [36]Efthimiou P, Blanco M: Pathogenesis of neuropsychiatric systemic lupus erythematosus and potential biomarkers. Mod Rheumatol 2009, 19(5):457-68.
  • [37]Ballok DA: Neuroimmunopathology in a murine model of neuropsychiatric lupus. Brain Res Rev 2007, 54(1):67-79.
  • [38]Jacob A, Hack B, Chiang E, Garcia JG, Quigg RJ, Alexander JJ: C5a alters blood–brain barrier integrity in experimental lupus. FASEB J 2010, 24(6):1682-8.
  • [39]Conti F, Alessandri C, Bompane D, Bombardieri M, Spinelli FR, Rusconi AC, et al.: Autoantibody profile in systemic lupus erythematosus with psychiatric manifestations: a role for anti-endothelial-cell antibodies. Arthritis Res Ther 2004, 6(4):R366-72. BioMed Central Full Text
  • [40]Deng GM, Liu L, Kyttaris VC, Tsokos GC: Lupus serum IgG induces skin inflammation through the TNFR1 signaling pathway. J Immunol 2010, 184(12):7154-61.
  • [41]Qing X, Pitashny M, Thomas DB, Barrat FJ, Hogarth MP, Putterman C: Pathogenic anti-DNA antibodies modulate gene expression in mesangial cells: involvement of HMGB1 in anti-DNA antibody-induced renal injury. Immunol Lett 2008, 121(1):61-73.
  • [42]Lu LD, Stump KL, Wallace NH, Dobrzanski P, Serdikoff C, Gingrich DE, et al.: Depletion of autoreactive plasma cells and treatment of lupus nephritis in mice using CEP-33779, a novel, orally active, selective inhibitor of JAK2. J Immunol 2011, 187(7):3840-53.
  • [43]Kowal C, Degiorgio LA, Lee JY, Edgar MA, Huerta PT, Volpe BT, et al.: Human lupus autoantibodies against NMDA receptors mediate cognitive impairment. Proc Natl Acad Sci U S A 2006, 103(52):19854-9.
  • [44]Hanly JG, Urowitz MB, Siannis F, Farewell V, Gordon C, Bae SC, et al.: Autoantibodies and neuropsychiatric events at the time of systemic lupus erythematosus diagnosis. Arthritis Rheum 2008, 58(3):843-53.
  • [45]Katzav A, Solodeev I, Brodsky O, Chapman J, Pick CG, Blank M, et al.: Induction of autoimmune depression in mice by anti-ribosomal P antibodies via the limbic system. Arthritis Rheum 2007, 56(3):938-48.
  • [46]Huerta PT, Kowal C, DeGiorgio LA, Volpe BT, Diamond B: Immunity and behavior: antibodies alter emotion. Proc Natl Acad Sci U S A 2006, 103(3):678-83.
  • [47]Sakic B, Denburg JA, Denburg SD, Szechtman H: Blunted sensitivity to sucrose in autoimmune MRL-lpr mice: a curve-shift study. Brain Res Bull 1996, 41(5):305-11.
  • [48]Farrell M, Sakic B, Szechtman H, Denburg JA: Effect of cyclophosphamide on leukocytic infiltration in the brain of MRL/lpr mice. Lupus 1997, 6(3):268-74.
  • [49]Kim A, Feng P, Ohkuri T, Sauers D, Cohn ZJ, Chai J, et al.: Defects in the peripheral taste structure and function in the MRL/lpr mouse model of autoimmune disease. PLoS One 2012., 7(4) Article ID e35588
  • [50]Awad A, Stuve O: Cyclophosphamide in multiple sclerosis: scientific rationale, history and novel treatment paradigms. Ther Adv Neurol Disord 2009, 2(6):50-61.
  • [51]Ginhoux F, Greter M, Leboeuf M, Nandi S, See P, Gokhan S, et al.: Fate mapping analysis reveals that adult microglia derive from primitive macrophages. Science 2010, 330(6005):841-5.
  • [52]Valerio A, Ferrario M, Martinez FO, Locati M, Ghisi V, Bresciani LG, et al.: Gene expression profile activated by the chemokine CCL5/RANTES in human neuronal cells. J Neurosci Res 2004, 78(3):371-82.
  • [53]Greter M, Merad M: Regulation of microglia development and homeostasis. Glia 2013, 61(1):121-7.
  • [54]Yona S, Kim KW, Wolf Y, Mildner A, Varol D, Breker M, et al.: Fate mapping reveals origins and dynamics of monocytes and tissue macrophages under homeostasis. Immunity 2013, 38(1):79-91.
  • [55]Ikehara S: New strategies for allogeneic BMT. Bone Marrow Transplant 2003, 32(Suppl 1):S73-5.
  • [56]Molano I, Mathenia J, Ruiz P, Gilkeson GS, Zhang XK: Decreased expression of Fli-1 in bone marrow-derived haematopoietic cells significantly affects disease development in Murphy Roths Large/lymphoproliferation (MRL/lpr) mice. Clin Exp Immunol 2010, 160(2):275-82.
  • [57]Loheswaran G, Kapadia M, Gladman M, Pulapaka S, Xu L, Stanojcic M, et al.: Altered neuroendocrine status at the onset of CNS lupus-like disease. Brain Behav Immun 2013, 32:86-93.
  • [58]Loheswaran G, Stanojcic M, Xu L, Sakic B: Autoimmunity as a principal pathogenic factor in the refined model of neuropsychiatric lupus. Clin Exper Neuroimmunol 2010, 1(3):141-52.
  • [59]Sakic B, Laflamme N, Crnic LS, Szechtman H, Denburg JA, Rivest S: Reduced corticotropin-releasing factor and enhanced vasopressin gene expression in brains of mice with autoimmunity-induced behavioral dysfunction. J Neuroimmunol 1999, 96(1):80-91.
  • [60]D’Acquisto F, Crompton T: CD3 + CD4-CD8- (double negative) T cells: saviours or villains of the immune response? Biochem Pharmacol 2011, 82(4):333-40.
  • [61]Duran-Struuck R, Dysko RC: Principles of bone marrow transplantation (BMT): providing optimal veterinary and husbandry care to irradiated mice in BMT studies. J Am Assoc Lab Anim Sci 2009, 48(1):11-22.
  • [62]Petri M, Naqibuddin M, Sampedro M, Omdal R, Carson KA: Memantine in systemic lupus erythematosus: a randomized, double-blind placebo-controlled trial. Semin Arthritis Rheum 2011, 41(2):194-202.
  • [63]Fanouriakis A, Boumpas DT, Bertsias GK: Pathogenesis and treatment of CNS lupus. Curr Opin Rheumatol 2013, 25(5):577-83.
  • [64]Jeltsch-David H, Muller S: Neuropsychiatric systemic lupus erythematosus: pathogenesis and biomarkers. Nat Rev Neurol 2014, 10(10):579-96.
  文献评价指标  
  下载次数:0次 浏览次数:3次