期刊论文详细信息
Journal of Molecular Signaling
TRAF molecules in cell signaling and in human diseases
Ping Xie1 
[1] Department of Cell Biology and Neuroscience, Rutgers University, 604 Allison Road, Nelson Labs Room B336, Piscataway, New Jersey 08854
关键词: DUBs;    E3 Ubiquitin ligases;    RLRs;    NLRs;    TLRs;    TNF-Rs;    TRAFs;   
Others  :  802549
DOI  :  10.1186/1750-2187-8-7
 received in 2013-03-22, accepted in 2013-06-07,  发布年份 2013
PDF
【 摘 要 】

The tumor necrosis factor receptor (TNF-R)-associated factor (TRAF) family of intracellular proteins were originally identified as signaling adaptors that bind directly to the cytoplasmic regions of receptors of the TNF-R superfamily. The past decade has witnessed rapid expansion of receptor families identified to employ TRAFs for signaling. These include Toll-like receptors (TLRs), NOD-like receptors (NLRs), RIG-I-like receptors (RLRs), T cell receptor, IL-1 receptor family, IL-17 receptors, IFN receptors and TGFβ receptors. In addition to their role as adaptor proteins, most TRAFs also act as E3 ubiquitin ligases to activate downstream signaling events. TRAF-dependent signaling pathways typically lead to the activation of nuclear factor-κBs (NF-κBs), mitogen-activated protein kinases (MAPKs), or interferon-regulatory factors (IRFs). Compelling evidence obtained from germ-line and cell-specific TRAF-deficient mice demonstrates that each TRAF plays indispensable and non-redundant physiological roles, regulating innate and adaptive immunity, embryonic development, tissue homeostasis, stress response, and bone metabolism. Notably, mounting evidence implicates TRAFs in the pathogenesis of human diseases such as cancers and autoimmune diseases, which has sparked new appreciation and interest in TRAF research. This review presents an overview of the current knowledge of TRAFs, with an emphasis on recent findings concerning TRAF molecules in signaling and in human diseases.

【 授权许可】

   
2013 Xie; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20140708024752824.pdf 2232KB PDF download
Figure 6. 85KB Image download
Figure 5. 95KB Image download
Figure 4. 90KB Image download
Figure 3. 186KB Image download
Figure 2. 165KB Image download
Figure 1. 80KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

【 参考文献 】
  • [1]Inoue J, Ishida T, Tsukamoto N, Kobayashi N, Naito A, Azuma S, Yamamoto T: Tumor necrosis factor receptor-associated factor (TRAF) family: adapter proteins that mediate cytokine signaling. Exp Cell Res 2000, 254:14-24.
  • [2]Wajant H, Henkler F, Scheurich P: The TNF-receptor-associated factor family. Scaffold molecules for cytokine receptors, kinases and their regulators. Cell Signal 2001, 13:389-400.
  • [3]Ha H, Han D, Choi Y: TRAF-mediated TNFR-family signaling. Curr Protoc Immunol 2009, 87:11.9D.1-11.9D.19.
  • [4]Xu LG, Li LY, Shu HB: TRAF7 potentiates MEKK3-induced AP1 and CHOP activation and induces apoptosis. J Biol Chem 2004, 279:17278-17282.
  • [5]Arron JR, Walsh MC, Choi Y: TRAF-mediated TNFR-family signaling. Curr Protoc Immunol 2002, 11.9D.1:11.9D.14. Chapter 11:Unit 11 19D
  • [6]Chung JY, Lu M, Yin Q, Lin SC, Wu H: Molecular basis for the unique specificity of TRAF6. Adv Exp Med Biol 2007, 597:122-130.
  • [7]Ely KR, Kodandapani R, Wu S: Protein-protein interactions in TRAF3. Adv Exp Med Biol 2007, 597:114-121.
  • [8]Ostuni R, Zanoni I, Granucci F: Deciphering the complexity of Toll-like receptor signaling. Cell Mol Life Sci 2010, 67:4109-4134.
  • [9]Hacker H, Tseng PH, Karin M: Expanding TRAF function: TRAF3 as a tri-faced immune regulator. Nat Rev Immunol 2011, 11:457-468.
  • [10]Kawai T, Akira S: The role of pattern-recognition receptors in innate immunity: update on Toll-like receptors. Nat Immunol 2010, 11:373-384.
  • [11]Xie P, Kraus ZJ, Stunz LL, Liu Y, Bishop GA: TNF Receptor-Associated Factor 3 Is Required for T Cell-Mediated Immunity and TCR/CD28 Signaling. J Immunol 2011, 186:143-155.
  • [12]Zepp J, Wu L, Li X: IL-17 receptor signaling and T helper 17-mediated autoimmune demyelinating disease. Trends Immunol 2011, 32:232-239.
  • [13]Yang CH, Murti A, Pfeffer SR, Fan M, Du Z, Pfeffer LM: The role of TRAF2 binding to the type I interferon receptor in alternative NF kappaB activation and antiviral response. J Biol Chem 2008, 283:14309-14316.
  • [14]Mao R, Fan Y, Mou Y, Zhang H, Fu S, Yang J: TAK1 lysine 158 is required for TGF-beta-induced TRAF6-mediated Smad-independent IKK/NF-kappaB and JNK/AP-1 activation. Cell Signal 2011, 23:222-227.
  • [15]Saleh M: The machinery of Nod-like receptors: refining the paths to immunity and cell death. Immunol Rev 2011, 243:235-246.
  • [16]Yu M, Levine SJ: Toll-like receptor, RIG-I-like receptors and the NLRP3 inflammasome: key modulators of innate immune responses to double-stranded RNA viruses. Cytokine Growth Factor Rev 2011, 22:63-72.
  • [17]Into T, Inomata M, Takayama E, Takigawa T: Autophagy in regulation of Toll-like receptor signaling. Cell Signal 2012, 24:1150-1162.
  • [18]Hildebrand JM, Yi Z, Buchta CM, Poovassery J, Stunz LL, Bishop GA: Roles of tumor necrosis factor receptor associated factor 3 (TRAF3) and TRAF5 in immune cell functions. Immunol Rev 2011, 244:55-74.
  • [19]Gravallese EM, Galson DL, Goldring SR, Auron PE: The role of TNF-receptor family members and other TRAF-dependent receptors in bone resorption. Arthritis Res 2001, 3:6-12. BioMed Central Full Text
  • [20]Oda S, Schroder M, Khan AR: Structural basis for targeting of human RNA helicase DDX3 by poxvirus protein K7. Structure 2009, 17:1528-1537.
  • [21]Wang D, Fang L, Li P, Sun L, Fan J, Zhang Q, Luo R, Liu X, Li K, Chen H, et al.: The leader proteinase of foot-and-mouth disease virus negatively regulates the type I interferon pathway by acting as a viral deubiquitinase. J Virol 2011, 85:3758-3766.
  • [22]Namjou B, Choi CB, Harley IT, Alarcon-Riquelme ME, Kelly JA, Glenn SB, Ojwang JO, Adler A, Kim K, Gallant CJ, et al.: Evaluation of TRAF6 in a large multiancestral lupus cohort. Arthritis Rheum 2012, 64:1960-1969.
  • [23]Netea MG, Wijmenga C, O’Neill LA: Genetic variation in Toll-like receptors and disease susceptibility. Nat Immunol 2012, 13:535-542.
  • [24]Muppidi JR, Tschopp J, Siegel RM: Life and death decisions: secondary complexes and lipid rafts in TNF receptor family signal transduction. Immunity 2004, 21:461-465.
  • [25]Twohig JP, Cuff SM, Yong AA, Wang EC: The role of tumor necrosis factor receptor superfamily members in mammalian brain development, function and homeostasis. Rev Neurosci 2011, 22:509-533.
  • [26]Cabal-Hierro L, Lazo PS: Signal transduction by tumor necrosis factor receptors. Cell Signal 2012, 24:1297-1305.
  • [27]Xie P, Kraus ZJ, Stunz LL, Bishop GA: Roles of TRAF molecules in B lymphocyte function. Cytokine Growth Factor Rev 2008, 19:199-207.
  • [28]Rickert RC, Jellusova J, Miletic AV: Signaling by the tumor necrosis factor receptor superfamily in B-cell biology and disease. Immunol Rev 2011, 244:115-133.
  • [29]Sanjo H, Zajonc DM, Braden R, Norris PS, Ware CF: Allosteric regulation of the ubiquitin:NIK and ubiquitin:TRAF3 E3 ligases by the lymphotoxin-beta receptor. J Biol Chem 2010, 285:17148-17155.
  • [30]De Trez C, Ware CF: The TNF receptor and Ig superfamily members form an integrated signaling circuit controlling dendritic cell homeostasis. Cytokine Growth Factor Rev 2008, 19:277-284.
  • [31]McPherson AJ, Snell LM, Mak TW, Watts TH: Opposing roles for TRAF1 in the alternative versus classical NF-kappaB pathway in T cells. J Biol Chem 2012, 287:23010-23019.
  • [32]Silke J, Brink R: Regulation of TNFRSF and innate immune signalling complexes by TRAFs and cIAPs. Cell Death Differ 2010, 17:35-45.
  • [33]Vince JE, Chau D, Callus B, Wong WW, Hawkins CJ, Schneider P, McKinlay M, Benetatos CA, Condon SM, Chunduru SK, et al.: TWEAK-FN14 signaling induces lysosomal degradation of a cIAP1-TRAF2 complex to sensitize tumor cells to TNFalpha. J Cell Biol 2008, 182:171-184.
  • [34]Ishida TK, Tojo T, Aoki T, Kobayashi N, Ohishi T, Watanabe T, Yamamoto T, Inoue J: TRAF5, a novel tumor necrosis factor receptor-associated factor family protein, mediates CD40 signaling. Proc Natl Acad Sci USA 1996, 93:9437-9442.
  • [35]Bishop GA, Moore CR, Xie P, Stunz LL, Kraus ZJ: TRAF proteins in CD40 signaling. Adv Exp Med Biol 2007, 597:131-151.
  • [36]Gardam S, Sierro F, Basten A, Mackay F, Brink R: TRAF2 and TRAF3 signal adapters act cooperatively to control the maturation and survival signals delivered to B cells by the BAFF receptor. Immunity 2008, 28:391-401.
  • [37]Vallabhapurapu S, Matsuzawa A, Zhang W, Tseng PH, Keats JJ, Wang H, Vignali DA, Bergsagel PL, Karin M: Nonredundant and complementary functions of TRAF2 and TRAF3 in a ubiquitination cascade that activates NIK-dependent alternative NF-kappaB signaling. Nat Immunol 2008, 9:1364-1370.
  • [38]Hildebrand JM, Luo Z, Manske MK, Price-Troska T, Ziesmer SC, Lin W, Hostager BS, Slager SL, Witzig TE, Ansell SM, et al.: A BAFF-R mutation associated with non-Hodgkin lymphoma alters TRAF recruitment and reveals new insights into BAFF-R signaling. J Exp Med 2010, 207:2569-2579.
  • [39]Hatzoglou A, Roussel J, Bourgeade MF, Rogier E, Madry C, Inoue J, Devergne O, Tsapis A: TNF receptor family member BCMA (B cell maturation) associates with TNF receptor-associated factor (TRAF) 1, TRAF2, and TRAF3 and activates NF-kappa B, elk-1, c-Jun N-terminal kinase, and p38 mitogen-activated protein kinase. J Immunol 2000, 165:1322-1330.
  • [40]Shu HB, Johnson H: B cell maturation protein is a receptor for the tumor necrosis factor family member TALL-1. Proc Natl Acad Sci USA 2000, 97:9156-9161.
  • [41]He B, Santamaria R, Xu W, Cols M, Chen K, Puga I, Shan M, Xiong H, Bussel JB, Chiu A, et al.: The transmembrane activator TACI triggers immunoglobulin class switching by activating B cells through the adaptor MyD88. Nat Immunol 2010, 11:836-845.
  • [42]Nakano H, Oshima H, Chung W, Williams-Abbott L, Ware CF, Yagita H, Okumura K: TRAF5, an activator of NF-kappaB and putative signal transducer for the lymphotoxin-beta receptor. J Biol Chem 1996, 271:14661-14664.
  • [43]Force WR, Cheung TC, Ware CF: Dominant negative mutants of TRAF3 reveal an important role for the coiled coil domains in cell death signaling by the lymphotoxin-beta receptor. J Biol Chem 1997, 272:30835-30840.
  • [44]VanArsdale TL, VanArsdale SL, Force WR, Walter BN, Mosialos G, Kieff E, Reed JC, Ware CF: Lymphotoxin-beta receptor signaling complex: role of tumor necrosis factor receptor-associated factor 3 recruitment in cell death and activation of nuclear factor kappaB. Proc Natl Acad Sci USA 1997, 94:2460-2465.
  • [45]Kuai J, Nickbarg E, Wooters J, Qiu Y, Wang J, Lin LL: Endogenous association of TRAF2, TRAF3, cIAP1, and Smac with lymphotoxin beta receptor reveals a novel mechanism of apoptosis. J Biol Chem 2003, 278:14363-14369.
  • [46]Bista P, Zeng W, Ryan S, Bailly V, Browning JL, Lukashev ME: TRAF3 controls activation of the canonical and alternative NFkappaB by the lymphotoxin beta receptor. J Biol Chem 2010, 285:12971-12978.
  • [47]Ganeff C, Remouchamps C, Boutaffala L, Benezech C, Galopin G, Vandepaer S, Bouillenne F, Ormenese S, Chariot A, Schneider P, et al.: Induction of the alternative NF-kappaB pathway by lymphotoxin alphabeta (LTalphabeta) relies on internalization of LTbeta receptor. Mol Cell Biol 2011, 31:4319-4334.
  • [48]Akiba H, Nakano H, Nishinaka S, Shindo M, Kobata T, Atsuta M, Morimoto C, Ware CF, Malinin NL, Wallach D, et al.: CD27, a member of the tumor necrosis factor receptor superfamily, activates NF-kappaB and stress-activated protein kinase/c-Jun N-terminal kinase via TRAF2, TRAF5, and NF-kappaB-inducing kinase. J Biol Chem 1998, 273:13353-13358.
  • [49]Yamamoto H, Kishimoto T, Minamoto S: NF-kappaB activation in CD27 signaling: involvement of TNF receptor-associated factors in its signaling and identification of functional region of CD27. J Immunol 1998, 161:4753-4759.
  • [50]Kawamata S, Hori T, Imura A, Takaori-Kondo A, Uchiyama T: Activation of OX40 signal transduction pathways leads to tumor necrosis factor receptor-associated factor (TRAF) 2- and TRAF5-mediated NF-kappaB activation. J Biol Chem 1998, 273:5808-5814.
  • [51]So T, Soroosh P, Eun SY, Altman A, Croft M: Antigen-independent signalosome of CARMA1, PKCtheta, and TNF receptor-associated factor 2 (TRAF2) determines NF-kappaB signaling in T cells. Proc Natl Acad Sci USA 2011, 108:2903-2908.
  • [52]Xiao X, Balasubramanian S, Liu W, Chu X, Wang H, Taparowsky EJ, Fu YX, Choi Y, Walsh MC, Li XC: OX40 signaling favors the induction of T(H)9 cells and airway inflammation. Nat Immunol 2012, 13:981-990.
  • [53]Esparza EM, Arch RH: TRAF4 functions as an intermediate of GITR-induced NF-kappaB activation. Cell Mol Life Sci 2004, 61:3087-3092.
  • [54]Esparza EM, Lindsten T, Stockhausen JM, Arch RH: Tumor necrosis factor receptor (TNFR)-associated factor 5 is a critical intermediate of costimulatory signaling pathways triggered by glucocorticoid-induced TNFR in T cells. J Biol Chem 2006, 281:8559-8564.
  • [55]Kanazawa K, Azuma Y, Nakano H, Kudo A: TRAF5 functions in both RANKL- and TNFalpha-induced osteoclastogenesis. J Bone Miner Res 2003, 18:443-450.
  • [56]Ock S, Ahn J, Lee SH, Park H, Son JW, Oh JG, Yang DK, Lee WS, Kim HS, Rho J, et al.: Receptor activator of nuclear factor-kappaB ligand is a novel inducer of myocardial inflammation. Cardiovasc Res 2012, 94:105-114.
  • [57]Hsu H, Solovyev I, Colombero A, Elliott R, Kelley M, Boyle WJ: ATAR, a novel tumor necrosis factor receptor family member, signals through TRAF2 and TRAF5. J Biol Chem 1997, 272:13471-13474.
  • [58]Kojima T, Morikawa Y, Copeland NG, Gilbert DJ, Jenkins NA, Senba E, Kitamura T: TROY, a newly identified member of the tumor necrosis factor receptor superfamily, exhibits a homology with Edar and is expressed in embryonic skin and hair follicles. J Biol Chem 2000, 275:20742-20747.
  • [59]Sinha SK, Zachariah S, Quinones HI, Shindo M, Chaudhary PM: Role of TRAF3 and −6 in the activation of the NF-kappa B and JNK pathways by X-linked ectodermal dysplasia receptor. J Biol Chem 2002, 277:44953-44961.
  • [60]Kumar A, Bhatnagar S, Paul PK: TWEAK and TRAF6 regulate skeletal muscle atrophy. Curr Opin Clin Nutr Metab Care 2012, 15:233-239.
  • [61]Vince JE, Pantaki D, Feltham R, Mace PD, Cordier SM, Schmukle AC, Davidson AJ, Callus BA, Wong WW, Gentle IE, et al.: TRAF2 must bind to cellular inhibitors of apoptosis for tumor necrosis factor (tnf) to efficiently activate nf-{kappa}b and to prevent tnf-induced apoptosis. J Biol Chem 2009, 284:35906-35915.
  • [62]Terry Powers JL, Mace KE, Parfrey H, Lee SJ, Zhang G, Riches DW: TNF receptor-1 (TNF-R1) ubiquitous scaffolding and signaling protein interacts with TNF-R1 and TRAF2 via an N-terminal docking interface. Biochemistry 2010, 49:7821-7829.
  • [63]Muntane J: Harnessing tumor necrosis factor receptors to enhance antitumor activities of drugs. Chem Res Toxicol 2011, 24:1610-1616.
  • [64]Verstrepen L, Bekaert T, Chau TL, Tavernier J, Chariot A, Beyaert R: TLR-4, IL-1R and TNF-R signaling to NF-kappaB: variations on a common theme. Cell Mol Life Sci 2008, 65:2964-2978.
  • [65]Powell JC, Twomey C, Jain R, McCarthy JV: Association between Presenilin-1 and TRAF6 modulates regulated intramembrane proteolysis of the p75NTR neurotrophin receptor. J Neurochem 2009, 108:216-230.
  • [66]Geetha T, Zheng C, McGregor WC, Douglas White B, Diaz-Meco MT, Moscat J, Babu JR: TRAF6 and p62 inhibit amyloid beta-induced neuronal death through p75 neurotrophin receptor. Neurochem Int 2012, 61:1289-1293.
  • [67]He W, Wang Q, Xu J, Xu X, Padilla MT, Ren G, Gou X, Lin Y: Attenuation of TNFSF10/TRAIL-induced apoptosis by an autophagic survival pathway involving TRAF2- and RIPK1/RIP1-mediated MAPK8/JNK activation. Autophagy 2012, 8:1811-1821.
  • [68]Vince JE, Wong WW, Khan N, Feltham R, Chau D, Ahmed AU, Benetatos CA, Chunduru SK, Condon SM, McKinlay M, et al.: IAP antagonists target cIAP1 to induce TNFalpha-dependent apoptosis. Cell 2007, 131:682-693.
  • [69]Varfolomeev E, Blankenship JW, Wayson SM, Fedorova AV, Kayagaki N, Garg P, Zobel K, Dynek JN, Elliott LO, Wallweber HJ, et al.: IAP antagonists induce autoubiquitination of c-IAPs, NF-kappaB activation, and TNFalpha-dependent apoptosis. Cell 2007, 131:669-681.
  • [70]Zarnegar BJ, Wang Y, Mahoney DJ, Dempsey PW, Cheung HH, He J, Shiba T, Yang X, Yeh WC, Mak TW, et al.: Noncanonical NF-kappaB activation requires coordinated assembly of a regulatory complex of the adaptors cIAP1, cIAP2, TRAF2 and TRAF3 and the kinase NIK. Nat Immunol 2008, 9:1371-1378.
  • [71]Vince JE, Wong WW, Gentle I, Lawlor KE, Allam R, O’Reilly L, Mason K, Gross O, Ma S, Guarda G, et al.: Inhibitor of apoptosis proteins limit RIP3 kinase-dependent interleukin-1 activation. Immunity 2012, 36:215-227.
  • [72]Matsuzawa A, Tseng PH, Vallabhapurapu S, Luo JL, Zhang W, Wang H, Vignali DA, Gallagher E, Karin M: Essential cytoplasmic translocation of a cytokine receptor-assembled signaling complex. Science 2008, 321:663-668.
  • [73]Tusche MW, Ward LA, Vu F, McCarthy D, Quintela-Fandino M, Ruland J, Gommerman JL, Mak TW: Differential requirement of MALT1 for BAFF-induced outcomes in B cell subsets. J Exp Med 2009, 206:2671-2683.
  • [74]Gardam S, Turner VM, Anderton H, Limaye S, Basten A, Koentgen F, Vaux DL, Silke J, Brink R: Deletion of cIAP1 and cIAP2 in murine B lymphocytes constitutively activates cell survival pathways and inactivates the germinal center response. Blood 2011, 117:4041-4051.
  • [75]Varfolomeev E, Goncharov T, Maecker H, Zobel K, Komuves LG, Deshayes K, Vucic D: Cellular inhibitors of apoptosis are global regulators of NF-kappaB and MAPK activation by members of the TNF family of receptors. Sci Signal 2012, 5:ra22.
  • [76]Craxton A, Draves KE, Gruppi A, Clark EA: BAFF regulates B cell survival by downregulating the BH3-only family member Bim via the ERK pathway. J Exp Med 2005, 202:1363-1374.
  • [77]Sabbagh L, Srokowski CC, Pulle G, Snell LM, Sedgmen BJ, Liu Y, Tsitsikov EN, Watts TH: A critical role for TNF receptor-associated factor 1 and Bim down-regulation in CD8 memory T cell survival. Proc Natl Acad Sci USA 2006, 103:18703-18708.
  • [78]Sabbagh L, Pulle G, Liu Y, Tsitsikov EN, Watts TH: ERK-dependent Bim modulation downstream of the 4-1BB-TRAF1 signaling axis is a critical mediator of CD8 T cell survival in vivo. J Immunol 2008, 180:8093-8101.
  • [79]Sabbagh L, Andreeva D, Laramee GD, Oussa NA, Lew D, Bisson N, Soumounou Y, Pawson T, Watts TH: Leukocyte-specific protein 1 links TNF receptor-associated factor 1 to survival signaling downstream of 4-1BB in T cells. J Leukoc Biol 2013, 93:713-721.
  • [80]Li X, Jiang S, Tapping RI: Toll-like receptor signaling in cell proliferation and survival. Cytokine 2010, 49:1-9.
  • [81]Lin Q, Li M, Fang D, Fang J, Su SB: The essential roles of Toll-like receptor signaling pathways in sterile inflammatory diseases. Int Immunopharmacol 2011, 11:1422-1432.
  • [82]Kondo T, Kawai T, Akira S: Dissecting negative regulation of Toll-like receptor signaling. Trends Immunol 2012, 33:449-458.
  • [83]O’Neill LA, Bowie AG: The family of five: TIR-domain-containing adaptors in Toll-like receptor signalling. Nat Rev Immunol 2007, 7:353-364.
  • [84]Sanjuan MA, Milasta S, Green DR: Toll-like receptor signaling in the lysosomal pathways. Immunol Rev 2009, 227:203-220.
  • [85]Suhir H, Etzioni A: The role of Toll-like receptor signaling in human immunodeficiencies. Clin Rev Allergy Immunol 2010, 38:11-19.
  • [86]Kawai T, Akira S: Toll-like receptor and RIG-I-like receptor signaling. Ann N Y Acad Sci 2008, 1143:1-20.
  • [87]Opitz B, Eitel J, Meixenberger K, Suttorp N: Role of Toll-like receptors, NOD-like receptors and RIG-I-like receptors in endothelial cells and systemic infections. Thromb Haemost 2009, 102:1103-1109.
  • [88]Jenkins KA, Mansell A: TIR-containing adaptors in Toll-like receptor signalling. Cytokine 2010, 49:237-244.
  • [89]Carpenter S, O’Neill LA: Recent insights into the structure of Toll-like receptors and post-translational modifications of their associated signalling proteins. Biochem J 2009, 422:1-10.
  • [90]Keating SE, Bowie AG: Role of non-degradative ubiquitination in interleukin-1 and toll-like receptor signaling. J Biol Chem 2009, 284:8211-8215.
  • [91]Xia ZP, Sun L, Chen X, Pineda G, Jiang X, Adhikari A, Zeng W, Chen ZJ: Direct activation of protein kinases by unanchored polyubiquitin chains. Nature 2009, 461:114-119.
  • [92]Tseng PH, Matsuzawa A, Zhang W, Mino T, Vignali DA, Karin M: Different modes of ubiquitination of the adaptor TRAF3 selectively activate the expression of type I interferons and proinflammatory cytokines. Nat Immunol 2010, 11:70-75.
  • [93]West AP, Brodsky IE, Rahner C, Woo DK, Erdjument-Bromage H, Tempst P, Walsh MC, Choi Y, Shadel GS, Ghosh S: TLR signalling augments macrophage bactericidal activity through mitochondrial ROS. Nature 2011, 472:476-480.
  • [94]Kawai T, Sato S, Ishii KJ, Coban C, Hemmi H, Yamamoto M, Terai K, Matsuda M, Inoue J, Uematsu S, et al.: Interferon-alpha induction through Toll-like receptors involves a direct interaction of IRF7 with MyD88 and TRAF6. Nat Immunol 2004, 5:1061-1068.
  • [95]Hacker H, Redecke V, Blagoev B, Kratchmarova I, Hsu LC, Wang GG, Kamps MP, Raz E, Wagner H, Hacker G, et al.: Specificity in Toll-like receptor signalling through distinct effector functions of TRAF3 and TRAF6. Nature 2006, 439:204-207.
  • [96]Oganesyan G, Saha SK, Guo B, He JQ, Shahangian A, Zarnegar B, Perry A, Cheng G: Critical role of TRAF3 in the Toll-like receptor-dependent and -independent antiviral response. Nature 2006, 439:208-211.
  • [97]Su X, Li S, Meng M, Qian W, Xie W, Chen D, Zhai Z, Shu HB: TNF receptor-associated factor-1 (TRAF1) negatively regulates Toll/IL-1 receptor domain-containing adaptor inducing IFN-beta (TRIF)-mediated signaling. Eur J Immunol 2006, 36:199-206.
  • [98]Sasai M, Tatematsu M, Oshiumi H, Funami K, Matsumoto M, Hatakeyama S, Seya T: Direct binding of TRAF2 and TRAF6 to TICAM-1/TRIF adaptor participates in activation of the Toll-like receptor 3/4 pathway. Mol Immunol 2010, 47:1283-1291.
  • [99]Takeshita F, Ishii KJ, Kobiyama K, Kojima Y, Coban C, Sasaki S, Ishii N, Klinman DM, Okuda K, Akira S, et al.: TRAF4 acts as a silencer in TLR-mediated signaling through the association with TRAF6 and TRIF. Eur J Immunol 2005, 35:2477-2485.
  • [100]Elinav E, Strowig T, Henao-Mejia J, Flavell RA: Regulation of the antimicrobial response by NLR proteins. Immunity 2011, 34:665-679.
  • [101]Bonardi V, Cherkis K, Nishimura MT, Dangl JL: A new eye on NLR proteins: focused on clarity or diffused by complexity? Curr Opin Immunol 2012, 24:41-50.
  • [102]Kersse K, Bertrand MJ, Lamkanfi M, Vandenabeele P: NOD-like receptors and the innate immune system: coping with danger, damage and death. Cytokine Growth Factor Rev 2011, 22:257-276.
  • [103]Philpott DJ, Girardin SE: Nod-like receptors: sentinels at host membranes. Curr Opin Immunol 2010, 22:428-434.
  • [104]Maekawa T, Kufer TA, Schulze-Lefert P: NLR functions in plant and animal immune systems: so far and yet so close. Nat Immunol 2011, 12:817-826.
  • [105]Labbe K, McIntire CR, Doiron K, Leblanc PM, Saleh M: Cellular inhibitors of apoptosis proteins cIAP1 and cIAP2 are required for efficient caspase-1 activation by the inflammasome. Immunity 2011, 35:897-907.
  • [106]Brodsky IE, Monack D: NLR-mediated control of inflammasome assembly in the host response against bacterial pathogens. Semin Immunol 2009, 21:199-207.
  • [107]Tigno-Aranjuez JT, Abbott DW: Ubiquitination and phosphorylation in the regulation of NOD2 signaling and NOD2-mediated disease. Biochim Biophys Acta 1823, 2012:2022-2028.
  • [108]Bertrand MJ, Doiron K, Labbe K, Korneluk RG, Barker PA, Saleh M: Cellular inhibitors of apoptosis cIAP1 and cIAP2 are required for innate immunity signaling by the pattern recognition receptors NOD1 and NOD2. Immunity 2009, 30:789-801.
  • [109]Marinis JM, Homer CR, McDonald C, Abbott DW: A novel motif in the Crohn’s disease susceptibility protein, NOD2, allows TRAF4 to down-regulate innate immune responses. J Biol Chem 2011, 286:1938-1950.
  • [110]Damgaard RB, Nachbur U, Yabal M, Wong WW, Fiil BK, Kastirr M, Rieser E, Rickard JA, Bankovacki A, Peschel C, et al.: The ubiquitin ligase XIAP recruits LUBAC for NOD2 signaling in inflammation and innate immunity. Mol Cell 2012, 46:746-758.
  • [111]Abbott DW, Yang Y, Hutti JE, Madhavarapu S, Kelliher MA, Cantley LC: Coordinated regulation of Toll-like receptor and NOD2 signaling by K63-linked polyubiquitin chains. Mol Cell Biol 2007, 27:6012-6025.
  • [112]Hasegawa M, Fujimoto Y, Lucas PC, Nakano H, Fukase K, Nunez G, Inohara N: A critical role of RICK/RIP2 polyubiquitination in Nod-induced NF-kappaB activation. EMBO J 2008, 27:373-383.
  • [113]Marinis JM, Hutti JE, Homer CR, Cobb BA, Cantley LC, McDonald C, Abbott DW: IkappaB kinase alpha phosphorylation of TRAF4 downregulates innate immune signaling. Mol Cell Biol 2012, 32:2479-2489.
  • [114]Watanabe T, Asano N, Fichtner-Feigl S, Gorelick PL, Tsuji Y, Matsumoto Y, Chiba T, Fuss IJ, Kitani A, Strober W: NOD1 contributes to mouse host defense against Helicobacter pylori via induction of type I IFN and activation of the ISGF3 signaling pathway. J Clin Invest 2010, 120:1645-1662.
  • [115]Sabbah A, Chang TH, Harnack R, Frohlich V, Tominaga K, Dube PH, Xiang Y, Bose S: Activation of innate immune antiviral responses by Nod2. Nat Immunol 2009, 10:1073-1080.
  • [116]Loo YM, Gale M Jr: Immune signaling by RIG-I-like receptors. Immunity 2011, 34:680-692.
  • [117]Allen IC, Wilson JE, Schneider M, Lich JD, Roberts RA, Arthur JC, Woodford RM, Davis BK, Uronis JM, Herfarth HH, et al.: NLRP12 suppresses colon inflammation and tumorigenesis through the negative regulation of noncanonical NF-kappaB signaling. Immunity 2012, 36:742-754.
  • [118]Allen IC, Moore CB, Schneider M, Lei Y, Davis BK, Scull MA, Gris D, Roney KE, Zimmermann AG, Bowzard JB, et al.: NLRX1 protein attenuates inflammatory responses to infection by interfering with the RIG-I-MAVS and TRAF6-NF-kappaB signaling pathways. Immunity 2011, 34:854-865.
  • [119]Xia X, Cui J, Wang HY, Zhu L, Matsueda S, Wang Q, Yang X, Hong J, Songyang Z, Chen ZJ, et al.: NLRX1 negatively regulates TLR-induced NF-kappaB signaling by targeting TRAF6 and IKK. Immunity 2011, 34:843-853.
  • [120]Schneider M, Zimmermann AG, Roberts RA, Zhang L, Swanson KV, Wen H, Davis BK, Allen IC, Holl EK, Ye Z, et al.: The innate immune sensor NLRC3 attenuates Toll-like receptor signaling via modification of the signaling adaptor TRAF6 and transcription factor NF-kappaB. Nat Immunol 2012, 13:823-831.
  • [121]Ramos HJ, Gale M Jr: RIG-I like receptors and their signaling crosstalk in the regulation of antiviral immunity. Curr Opin Virol 2011, 1:167-176.
  • [122]Kato H, Takahasi K, Fujita T: RIG-I-like receptors: cytoplasmic sensors for non-self RNA. Immunol Rev 2011, 243:91-98.
  • [123]Nakhaei P, Genin P, Civas A, Hiscott J: RIG-I-like receptors: sensing and responding to RNA virus infection. Semin Immunol 2009, 21:215-222.
  • [124]Barral PM, Sarkar D, Su ZZ, Barber GN, DeSalle R, Racaniello VR, Fisher PB: Functions of the cytoplasmic RNA sensors RIG-I and MDA-5: key regulators of innate immunity. Pharmacol Ther 2009, 124:219-234.
  • [125]Mikkelsen SS, Jensen SB, Chiliveru S, Melchjorsen J, Julkunen I, Gaestel M, Arthur JS, Flavell RA, Ghosh S, Paludan SR: RIG-I-mediated activation of p38 MAPK is essential for viral induction of interferon and activation of dendritic cells: dependence on TRAF2 and TAK1. J Biol Chem 2009, 284:10774-10782.
  • [126]Saha SK, Pietras EM, He JQ, Kang JR, Liu SY, Oganesyan G, Shahangian A, Zarnegar B, Shiba TL, Wang Y, et al.: Regulation of antiviral responses by a direct and specific interaction between TRAF3 and Cardif. EMBO J 2006, 25:3257-3263.
  • [127]Yoshida R, Takaesu G, Yoshida H, Okamoto F, Yoshioka T, Choi Y, Akira S, Kawai T, Yoshimura A, Kobayashi T: TRAF6 and MEKK1 play a pivotal role in the RIG-I-like helicase antiviral pathway. J Biol Chem 2008, 283:36211-36220.
  • [128]Maelfait J, Beyaert R: Emerging role of ubiquitination in antiviral RIG-I signaling. Microbiol Mol Biol Rev 2012, 76:33-45.
  • [129]Leung DW, Basler CF, Amarasinghe GK: Molecular mechanisms of viral inhibitors of RIG-I-like receptors. Trends Microbiol 2012, 20:139-146.
  • [130]Paz S, Vilasco M, Werden SJ, Arguello M, Joseph-Pillai D, Zhao T, Nguyen TL, Sun Q, Meurs EF, Lin R, et al.: A functional C-terminal TRAF3-binding site in MAVS participates in positive and negative regulation of the IFN antiviral response. Cell Res 2011, 21:895-910.
  • [131]Zhang P, Reichardt A, Liang H, Aliyari R, Cheng D, Wang Y, Xu F, Cheng G, Liu Y: Single Amino Acid Substitutions Confer the Antiviral Activity of the TRAF3 Adaptor Protein onto TRAF5. Sci Signal 2012, 5:ra81.
  • [132]Wen C, Yan Z, Yang X, Guan K, Xu C, Song T, Zheng Z, Wang W, Wang Y, Zhao M, et al.: Identification of tyrosine-9 of MAVS as critical target for inducible phosphorylation that determines activation. PLoS One 2012, 7:e41687.
  • [133]Huang Y, Liu H, Ge R, Zhou Y, Lou X, Wang C: UXT-V1 facilitates the formation of MAVS antiviral signalosome on mitochondria. J Immunol 2012, 188:358-366.
  • [134]Zhao T, Yang L, Sun Q, Arguello M, Ballard DW, Hiscott J, Lin R: The NEMO adaptor bridges the nuclear factor-kappaB and interferon regulatory factor signaling pathways. Nat Immunol 2007, 8:592-600.
  • [135]Ryzhakov G, Randow F: SINTBAD, a novel component of innate antiviral immunity, shares a TBK1-binding domain with NAP1 and TANK. EMBO J 2007, 26:3180-3190.
  • [136]Zeng W, Xu M, Liu S, Sun L, Chen ZJ: Key role of Ubc5 and lysine-63 polyubiquitination in viral activation of IRF3. Mol Cell 2009, 36:315-325.
  • [137]Parvatiyar K, Barber GN, Harhaj EW: TAX1BP1 and A20 inhibit antiviral signaling by targeting TBK1-IKKi kinases. J Biol Chem 2010, 285:14999-15009.
  • [138]Belgnaoui SM, Paz S, Samuel S, Goulet ML, Sun Q, Kikkert M, Iwai K, Dikic I, Hiscott J, Lin R: Linear ubiquitination of NEMO negatively regulates the interferon antiviral response through disruption of the MAVS-TRAF3 complex. Cell Host Microbe 2012, 12:211-222.
  • [139]Tang ED, Wang CY: TRAF5 is a downstream target of MAVS in antiviral innate immune signaling. PLoS One 2010, 5:e9172.
  • [140]Chattopadhyay S, Marques JT, Yamashita M, Peters KL, Smith K, Desai A, Williams BR, Sen GC: Viral apoptosis is induced by IRF-3-mediated activation of Bax. EMBO J 2010, 29:1762-1773.
  • [141]Konno H, Yamamoto T, Yamazaki K, Gohda J, Akiyama T, Semba K, Goto H, Kato A, Yujiri T, Imai T, et al.: TRAF6 establishes innate immune responses by activating NF-kappaB and IRF7 upon sensing cytosolic viral RNA and DNA. PLoS One 2009, 4:e5674.
  • [142]Hu Y, Wang J, Yang B, Zheng N, Qin M, Ji Y, Lin G, Tian L, Wu X, Wu L, et al.: Guanylate binding protein 4 negatively regulates virus-induced type I IFN and antiviral response by targeting IFN regulatory factor 7. J Immunol 2011, 187:6456-6462.
  • [143]Yoboua F, Martel A, Duval A, Mukawera E, Grandvaux N: Respiratory syncytial virus-mediated NF-kappa B p65 phosphorylation at serine 536 is dependent on RIG-I, TRAF6, and IKK beta. J Virol 2010, 84:7267-7277.
  • [144]Mao AP, Li S, Zhong B, Li Y, Yan J, Li Q, Teng C, Shu HB: Virus-triggered ubiquitination of TRAF3/6 by cIAP1/2 is essential for induction of interferon-beta (IFN-beta) and cellular antiviral response. J Biol Chem 2010, 285:9470-9476.
  • [145]Choi YS, Choi HJ, Min JK, Pyun BJ, Maeng YS, Park H, Kim J, Kim YM, Kwon YG: Interleukin-33 induces angiogenesis and vascular permeability through ST2/TRAF6-mediated endothelial nitric oxide production. Blood 2009, 114:3117-3126.
  • [146]Funakoshi-Tago M, Tago K, Hayakawa M, Tominaga S, Ohshio T, Sonoda Y, Kasahara T: TRAF6 is a critical signal transducer in IL-33 signaling pathway. Cell Signal 2008, 20:1679-1686.
  • [147]Hu Y, Shen F, Crellin NK, Ouyang W: The IL-17 pathway as a major therapeutic target in autoimmune diseases. Ann N Y Acad Sci 2011, 1217:60-76.
  • [148]Reynolds JM, Angkasekwinai P, Dong C: IL-17 family member cytokines: regulation and function in innate immunity. Cytokine Growth Factor Rev 2010, 21:413-423.
  • [149]Chang SH, Dong C: Signaling of interleukin-17 family cytokines in immunity and inflammation. Cell Signal 2011, 23:1069-1075.
  • [150]Shen F, Gaffen SL: Structure-function relationships in the IL-17 receptor: implications for signal transduction and therapy. Cytokine 2008, 41:92-104.
  • [151]Gaffen SL: Recent advances in the IL-17 cytokine family. Curr Opin Immunol 2011, 23:613-619.
  • [152]Gaffen SL: Structure and signalling in the IL-17 receptor family. Nat Rev Immunol 2009, 9:556-567.
  • [153]Sun D, Novotny M, Bulek K, Liu C, Li X, Hamilton T: Treatment with IL-17 prolongs the half-life of chemokine CXCL1 mRNA via the adaptor TRAF5 and the splicing-regulatory factor SF2 (ASF). Nat Immunol 2011, 12:853-860.
  • [154]Qian Y, Liu C, Hartupee J, Altuntas CZ, Gulen MF, Jane-Wit D, Xiao J, Lu Y, Giltiay N, Liu J, et al.: The adaptor Act1 is required for interleukin 17-dependent signaling associated with autoimmune and inflammatory disease. Nat Immunol 2007, 8:247-256.
  • [155]Chang SH, Park H, Dong C: Act1 adaptor protein is an immediate and essential signaling component of interleukin-17 receptor. J Biol Chem 2006, 281:35603-35607.
  • [156]Rong Z, Cheng L, Ren Y, Li Z, Li Y, Li X, Li H, Fu XY, Chang Z: Interleukin-17F signaling requires ubiquitination of interleukin-17 receptor via TRAF6. Cell Signal 2007, 19:1514-1520.
  • [157]Sonder SU, Saret S, Tang W, Sturdevant DE, Porcella SF, Siebenlist U: IL-17-induced NF-kappaB activation via CIKS/Act1: physiologic significance and signaling mechanisms. J Biol Chem 2011, 286:12881-12890.
  • [158]Schwandner R, Yamaguchi K, Cao Z: Requirement of tumor necrosis factor receptor-associated factor (TRAF)6 in interleukin 17 signal transduction. J Exp Med 2000, 191:1233-1240.
  • [159]Chang SH, Dong C: IL-17F: regulation, signaling and function in inflammation. Cytokine 2009, 46:7-11.
  • [160]Shen F, Li N, Gade P, Kalvakolanu DV, Weibley T, Doble B, Woodgett JR, Wood TD, Gaffen SL: IL-17 receptor signaling inhibits C/EBPbeta by sequential phosphorylation of the regulatory 2 domain. Sci Signal 2009, 2:ra8.
  • [161]Bulek K, Liu C, Swaidani S, Wang L, Page RC, Gulen MF, Herjan T, Abbadi A, Qian W, Sun D, et al.: The inducible kinase IKKi is required for IL-17-dependent signaling associated with neutrophilia and pulmonary inflammation. Nat Immunol 2011, 12:844-852.
  • [162]Qu F, Gao H, Zhu S, Shi P, Zhang Y, Liu Y, Jallal B, Yao Y, Shi Y, Qian Y: TRAF6-dependent Act1 phosphorylation by the IkappaB kinase-related kinases suppresses interleukin-17-induced NF-kappaB activation. Mol Cell Biol 2012, 32:3925-3937.
  • [163]Zhu S, Pan W, Shi P, Gao H, Zhao F, Song X, Liu Y, Zhao L, Li X, Shi Y, et al.: Modulation of experimental autoimmune encephalomyelitis through TRAF3-mediated suppression of interleukin 17 receptor signaling. J Exp Med 2010, 207:2647-2662.
  • [164]Zepp JA, Liu C, Qian W, Wu L, Gulen MF, Kang Z, Li X: Cutting edge: TNF receptor-associated factor 4 restricts IL-17-mediated pathology and signaling processes. J Immunol 2012, 189:33-37.
  • [165]Yang CH, Murti A, Pfeffer LM: Interferon induces NF-kappa B-inducing kinase/tumor necrosis factor receptor-associated factor-dependent NF-kappa B activation to promote cell survival. J Biol Chem 2005, 280:31530-31536.
  • [166]Xie YF, Cui YB, Hui XW, Wang L, Ma XL, Chen H, Wang X, Huang BR: Interaction of IFNlambdaR1 with TRAF6 regulates NF-kappaB activation and IFNlambdaR1 stability. J Cell Biochem 2012, 113:3371-3379.
  • [167]Sorrentino A, Thakur N, Grimsby S, Marcusson A, von Bulow V, Schuster N, Zhang S, Heldin CH, Landstrom M: The type I TGF-beta receptor engages TRAF6 to activate TAK1 in a receptor kinase-independent manner. Nat Cell Biol 2008, 10:1199-1207.
  • [168]Yamashita M, Fatyol K, Jin C, Wang X, Liu Z, Zhang YE: TRAF6 mediates Smad-independent activation of JNK and p38 by TGF-beta. Mol Cell 2008, 31:918-924.
  • [169]Mu Y, Sundar R, Thakur N, Ekman M, Gudey SK, Yakymovych M, Hermansson A, Dimitriou H, Bengoechea-Alonso MT, Ericsson J, et al.: TRAF6 ubiquitinates TGFbeta type I receptor to promote its cleavage and nuclear translocation in cancer. Nat Commun 2011, 2:330.
  • [170]Lim S, Bae E, Kim HS, Kim TA, Byun K, Kim B, Hong S, Im JP, Yun C, Lee B, et al.: TRAF6 mediates IL-1beta/LPS-induced suppression of TGF-beta signaling through its interaction with the type III TGF-beta receptor. PLoS One 2012, 7:e32705.
  • [171]Wang C, McPherson AJ, Jones RB, Kawamura KS, Lin GH, Lang PA, Ambagala T, Pellegrini M, Calzascia T, Aidarus N, et al.: Loss of the signaling adaptor TRAF1 causes CD8+ T cell dysregulation during human and murine chronic infection. J Exp Med 2012, 209:77-91.
  • [172]Motegi H, Shimo Y, Akiyama T, Inoue J: TRAF6 negatively regulates the Jak1-Erk pathway in interleukin-2 signaling. Genes Cells 2011, 16:179-189.
  • [173]Tsitsikov EN, Laouini D, Dunn IF, Sannikova TY, Davidson L, Alt FW, Geha RS: TRAF1 is a negative regulator of TNF signaling. enhanced TNF signaling in TRAF1-deficient mice. Immunity 2001, 15:647-657.
  • [174]Sun L, Deng L, Ea CK, Xia ZP, Chen ZJ: The TRAF6 ubiquitin ligase and TAK1 kinase mediate IKK activation by BCL10 and MALT1 in T lymphocytes. Mol Cell 2004, 14:289-301.
  • [175]Bidere N, Snow AL, Sakai K, Zheng L, Lenardo MJ: Caspase-8 regulation by direct interaction with TRAF6 in T cell receptor-induced NF-kappaB activation. Curr Biol 2006, 16:1666-1671.
  • [176]Xie JJ, Liang JQ, Diao LH, Altman A, Li Y: TNFR-Associated Factor 6 Regulates TCR Signaling via Interaction with and Modification of LAT Adapter. J Immunol 2013, 190:4027-4036.
  • [177]Gorjestani S, Darnay BG, Lin X: TRAF6 and TAK1 play essential roles in C-type lectin receptor signaling in response to Candida albicans infection. J Biol Chem 2012, 287:44143-44150.
  • [178]Hinz M, Stilmann M, Arslan SC, Khanna KK, Dittmar G, Scheidereit C: A cytoplasmic ATM-TRAF6-cIAP1 module links nuclear DNA damage signaling to ubiquitin-mediated NF-kappaB activation. Mol Cell 2010, 40:63-74.
  • [179]Habelhah H: Emerging complexity of protein ubiquitination in the NF-kappaB pathway. Genes Cancer 2010, 1:735-747.
  • [180]Alvarez SE, Harikumar KB, Hait NC, Allegood J, Strub GM, Kim EY, Maceyka M, Jiang H, Luo C, Kordula T, et al.: Sphingosine-1-phosphate is a missing cofactor for the E3 ubiquitin ligase TRAF2. Nature 2010, 465:1084-1088.
  • [181]Yin Q, Lamothe B, Darnay BG, Wu H: Structural basis for the lack of E2 interaction in the RING domain of TRAF2. Biochemistry 2009, 48:10558-10567.
  • [182]Zhang L, Blackwell K, Shi Z, Habelhah H: The RING domain of TRAF2 plays an essential role in the inhibition of TNFalpha-induced cell death but not in the activation of NF-kappaB. J Mol Biol 2010, 396:528-539.
  • [183]Silke J: The regulation of TNF signalling: what a tangled web we weave. Curr Opin Immunol 2011, 23:620-626.
  • [184]Habelhah H, Takahashi S, Cho SG, Kadoya T, Watanabe T, Ronai Z: Ubiquitination and translocation of TRAF2 is required for activation of JNK but not of p38 or NF-kappaB. EMBO J 2004, 23:322-332.
  • [185]Kayagaki N, Phung Q, Chan S, Chaudhari R, Quan C, O’Rourke KM, Eby M, Pietras E, Cheng G, Bazan JF, et al.: DUBA: a deubiquitinase that regulates type I interferon production. Science 2007, 318:1628-1632.
  • [186]Lamothe B, Campos AD, Webster WK, Gopinathan A, Hur L, Darnay BG: The RING domain and first zinc finger of TRAF6 coordinate signaling by interleukin-1, lipopolysaccharide, and RANKL. J Biol Chem 2008, 283:24871-24880.
  • [187]Fan Y, Yu Y, Shi Y, Sun W, Xie M, Ge N, Mao R, Chang A, Xu G, Schneider MD, et al.: Lysine 63-linked polyubiquitination of TAK1 at lysine 158 is required for tumor necrosis factor alpha- and interleukin-1beta-induced IKK/NF-kappaB and JNK/AP-1 activation. J Biol Chem 2010, 285:5347-5360.
  • [188]Conze DB, Wu CJ, Thomas JA, Landstrom A, Ashwell JD: Lys63-linked polyubiquitination of IRAK-1 is required for interleukin-1 receptor- and toll-like receptor-mediated NF-kappaB activation. Mol Cell Biol 2008, 28:3538-3547.
  • [189]Saitoh T, Satoh T, Yamamoto N, Uematsu S, Takeuchi O, Kawai T, Akira S: Antiviral protein Viperin promotes Toll-like receptor 7- and Toll-like receptor 9-mediated type I interferon production in plasmacytoid dendritic cells. Immunity 2011, 34:352-363.
  • [190]Yang WL, Wang J, Chan CH, Lee SW, Campos AD, Lamothe B, Hur L, Grabiner BC, Lin X, Darnay BG, et al.: The E3 ligase TRAF6 regulates Akt ubiquitination and activation. Science 2009, 325:1134-1138.
  • [191]Liu A, Gong P, Hyun SW, Wang KZ, Cates EA, Perkins D, Bannerman DD, Puche AC, Toshchakov VY, Fang S, et al.: TRAF6 protein couples Toll-like receptor 4 signaling to Src family kinase activation and opening of paracellular pathway in human lung microvascular endothelia. J Biol Chem 2012, 287:16132-16145.
  • [192]Sebban-Benin H, Pescatore A, Fusco F, Pascuale V, Gautheron J, Yamaoka S, Moncla A, Ursini MV, Courtois G: Identification of TRAF6-dependent NEMO polyubiquitination sites through analysis of a new NEMO mutation causing incontinentia pigmenti. Hum Mol Genet 2007, 16:2805-2815.
  • [193]Napolitano G, Mirra S, Monfregola J, Lavorgna A, Leonardi A, Ursini MV: NESCA: a new NEMO/IKKgamma and TRAF6 interacting protein. J Cell Physiol 2009, 220:410-417.
  • [194]Carpentier I, Coornaert B, Beyaert R: Smurf2 is a TRAF2 binding protein that triggers TNF-R2 ubiquitination and TNF-R2-induced JNK activation. Biochem Biophys Res Commun 2008, 374:752-757.
  • [195]Ning S, Campos AD, Darnay BG, Bentz GL, Pagano JS: TRAF6 and the three C-terminal lysine sites on IRF7 are required for its ubiquitination-mediated activation by the tumor necrosis factor receptor family member latent membrane protein 1. Mol Cell Biol 2008, 28:6536-6546.
  • [196]Chang Foreman HC, Van Scoy S, Cheng TF, Reich NC: Activation of interferon regulatory factor 5 by site specific phosphorylation. PLoS One 2012, 7:e33098.
  • [197]Balkhi MY, Fitzgerald KA, Pitha PM: Functional regulation of MyD88-activated interferon regulatory factor 5 by K63-linked polyubiquitination. Mol Cell Biol 2008, 28:7296-7308.
  • [198]Schichl YM, Resch U, Lemberger CE, Stichlberger D, de Martin R: Novel phosphorylation-dependent ubiquitination of tristetraprolin by mitogen-activated protein kinase/extracellular signal-regulated kinase kinase kinase 1 (MEKK1) and tumor necrosis factor receptor-associated factor 2 (TRAF2). J Biol Chem 2011, 286:38466-38477.
  • [199]Shi CS, Kehrl JH: TRAF6 and A20 regulate lysine 63-linked ubiquitination of Beclin-1 to control TLR4-induced autophagy. Sci Signal 2010, 3:ra42.
  • [200]Inomata M, Niida S, Shibata K, Into T: Regulation of Toll-like receptor signaling by NDP52-mediated selective autophagy is normally inactivated by A20. Cell Mol Life Sci 2012, 69:963-979.
  • [201]Liu C, Qian W, Qian Y, Giltiay NV, Lu Y, Swaidani S, Misra S, Deng L, Chen ZJ, Li X: Act1, a U-box E3 ubiquitin ligase for IL-17 signaling. Sci Signal 2009, 2:ra63.
  • [202]Siednienko J, Jackson R, Mellett M, Delagic N, Yang S, Wang B, Tang LS, Callanan JJ, Mahon BP, Moynagh PN: Pellino3 targets the IRF7 pathway and facilitates autoregulation of TLR3- and viral-induced expression of type I interferons. Nat Immunol 2012, 13:1055-1062.
  • [203]Nakhaei P, Mesplede T, Solis M, Sun Q, Zhao T, Yang L, Chuang TH, Ware CF, Lin R, Hiscott J: The E3 ubiquitin ligase Triad3A negatively regulates the RIG-I/MAVS signaling pathway by targeting TRAF3 for degradation. PLoS Pathog 2009, 5:e1000650.
  • [204]Zhong B, Liu X, Wang X, Chang SH, Wang A, Reynolds JM, Dong C: Negative regulation of IL-17-mediated signaling and inflammation by the ubiquitin-specific protease USP25. Nat Immunol 2012, 13:1110-1117.
  • [205]Li X, Yang Y, Ashwell JD: TNF-RII and c-IAP1 mediate ubiquitination and degradation of TRAF2. Nature 2002, 416:345-347.
  • [206]Wu CJ, Conze DB, Li X, Ying SX, Hanover JA, Ashwell JD: TNF-alpha induced c-IAP1/TRAF2 complex translocation to a Ubc6-containing compartment and TRAF2 ubiquitination. EMBO J 2005, 24:1886-1898.
  • [207]Dupoux A, Cartier J, Cathelin S, Filomenko R, Solary E, Dubrez-Daloz L: cIAP1-dependent TRAF2 degradation regulates the differentiation of monocytes into macrophages and their response to CD40 ligand. Blood 2009, 113:175-185.
  • [208]Chang EJ, Ha J, Kang SS, Lee ZH, Kim HH: AWP1 binds to tumor necrosis factor receptor-associated factor 2 (TRAF2) and is involved in TRAF2-mediated nuclear factor-kappaB signaling. Int J Biochem Cell Biol 2011, 43:1612-1620.
  • [209]McBerry C, Gonzalez RM, Shryock N, Dias A, Aliberti J: SOCS2-induced proteasome-dependent TRAF6 degradation: a common anti-inflammatory pathway for control of innate immune responses. PLoS One 2012, 7:e38384.
  • [210]Gudi R, Barkinge J, Hawkins S, Prabhakar B, Kanteti P: Siva-1 promotes K-48 polyubiquitination of TRAF2 and inhibits TCR-mediated activation of NF-kappaB. J Environ Pathol Toxicol Oncol 2009, 28:25-38.
  • [211]Zhou L, Ma Q, Shi H, Huo K: NUMBL interacts with TRAF6 and promotes the degradation of TRAF6. Biochem Biophys Res Commun 2010, 392:409-414.
  • [212]Tao T, Cheng C, Ji Y, Xu G, Zhang J, Zhang L, Shen A: Numbl inhibits glioma cell migration and invasion by suppressing TRAF5-mediated NF-kappaB activation. Mol Biol Cell 2012, 23:2635-2644.
  • [213]Jang KW, Lee KH, Kim SH, Jin T, Choi EY, Jeon HJ, Kim E, Han YS, Chung JH: Ubiquitin ligase CHIP induces TRAF2 proteasomal degradation and NF-kappaB inactivation to regulate breast cancer cell invasion. J Cell Biochem 2011, 112:3612-3620.
  • [214]Wang J, Hu Y, Deng WW, Sun B: Negative regulation of Toll-like receptor signaling pathway. Microbes Infect 2009, 11:321-327.
  • [215]Chapard C, Hohl D, Huber M: The role of the TRAF-interacting protein in proliferation and differentiation. Exp Dermatol 2012, 21:321-326.
  • [216]Gonzalez-Navajas JM, Law J, Nguyen KP, Bhargava M, Corr MP, Varki N, Eckmann L, Hoffman HM, Lee J, Raz E: Interleukin 1 receptor signaling regulates DUBA expression and facilitates Toll-like receptor 9-driven antiinflammatory cytokine production. J Exp Med 2010, 207:2799-2807.
  • [217]Shembade N, Ma A, Harhaj EW: Inhibition of NF-kappaB signaling by A20 through disruption of ubiquitin enzyme complexes. Science 2010, 327:1135-1139.
  • [218]Li L, Soetandyo N, Wang Q, Ye Y: The zinc finger protein A20 targets TRAF2 to the lysosomes for degradation. Biochim Biophys Acta 2009, 1793:346-353.
  • [219]Liang J, Saad Y, Lei T, Wang J, Qi D, Yang Q, Kolattukudy PE, Fu M: MCP-induced protein 1 deubiquitinates TRAF proteins and negatively regulates JNK and NF-kappaB signaling. J Exp Med 2010, 207:2959-2973.
  • [220]Lee EG, Boone DL, Chai S, Libby SL, Chien M, Lodolce JP, Ma A: Failure to regulate TNF-induced NF-kappaB and cell death responses in A20-deficient mice. Science 2000, 289:2350-2354.
  • [221]Zhang J, Stirling B, Temmerman ST, Ma CA, Fuss IJ, Derry JM, Jain A: Impaired regulation of NF-kappaB and increased susceptibility to colitis-associated tumorigenesis in CYLD-deficient mice. J Clin Invest 2006, 116:3042-3049.
  • [222]Trompouki E, Hatzivassiliou E, Tsichritzis T, Farmer H, Ashworth A, Mosialos G: CYLD is a deubiquitinating enzyme that negatively regulates NF-kappaB activation by TNFR family members. Nature 2003, 424:793-796.
  • [223]Jin W, Chang M, Paul EM, Babu G, Lee AJ, Reiley W, Wright A, Zhang M, You J, Sun SC: Deubiquitinating enzyme CYLD negatively regulates RANK signaling and osteoclastogenesis in mice. J Clin Invest 2008, 118:1858-1866.
  • [224]Kovalenko A, Chable-Bessia C, Cantarella G, Israel A, Wallach D, Courtois G: The tumour suppressor CYLD negatively regulates NF-kappaB signalling by deubiquitination. Nature 2003, 424:801-805.
  • [225]Mahul-Mellier AL, Pazarentzos E, Datler C, Iwasawa R, AbuAli G, Lin B, Grimm S: De-ubiquitinating protease USP2a targets RIP1 and TRAF2 to mediate cell death by TNF. Cell Death Differ 2012, 19:891-899.
  • [226]He X, Li Y, Li C, Liu LJ, Zhang XD, Liu Y, Shu HB: USP2a negatively regulates IL-1beta- and virus-induced NF-kappaB activation by deubiquitinating TRAF6. J Mol Cell Biol 2013, 5:39-47.
  • [227]Xiao N, Li H, Luo J, Wang R, Chen H, Chen J, Wang P: Ubiquitin-specific protease 4 (USP4) targets TRAF2 and TRAF6 for deubiquitination and inhibits TNFalpha-induced cancer cell migration. Biochem J 2012, 441:979-986.
  • [228]Zhou F, Zhang X, van Dam H, Ten Dijke P, Huang H, Zhang L: Ubiquitin-specific protease 4 mitigates Toll-like/interleukin-1 receptor signaling and regulates innate immune activation. J Biol Chem 2012, 287:11002-11010.
  • [229]Yasunaga J, Lin FC, Lu X, Jeang KT: Ubiquitin-specific peptidase 20 targets TRAF6 and human T cell leukemia virus type 1 tax to negatively regulate NF-kappaB signaling. J Virol 2011, 85:6212-6219.
  • [230]Li S, Zheng H, Mao AP, Zhong B, Li Y, Liu Y, Gao Y, Ran Y, Tien P, Shu HB: Regulation of virus-triggered signaling by OTUB1- and OTUB2-mediated deubiquitination of TRAF3 and TRAF6. J Biol Chem 2010, 285:4291-4297.
  • [231]Boone DL, Turer EE, Lee EG, Ahmad RC, Wheeler MT, Tsui C, Hurley P, Chien M, Chai S, Hitotsumatsu O, et al.: The ubiquitin-modifying enzyme A20 is required for termination of Toll-like receptor responses. Nat Immunol 2004, 5:1052-1060.
  • [232]Srivastav S, Kar S, Chande AG, Mukhopadhyaya R, Das PK: Leishmania donovani exploits host deubiquitinating enzyme A20, a negative regulator of TLR signaling, to subvert host immune response. J Immunol 2012, 189:924-934.
  • [233]Kato T Jr, Gotoh Y, Hoffmann A, Ono Y: Negative regulation of constitutive NF-kappaB and JNK signaling by PKN1-mediated phosphorylation of TRAF1. Genes Cells 2008, 13:509-520.
  • [234]Oussa NA, Soumounou Y, Sabbagh L: TRAF1 phosphorylation on Serine 139 modulates NF-kappaB activity downstream of 4-1BB in T cells. Biochem Biophys Res Commun 2013, 432:129-134.
  • [235]Thomas GS, Zhang L, Blackwell K, Habelhah H: Phosphorylation of TRAF2 within its RING domain inhibits stress-induced cell death by promoting IKK and suppressing JNK activation. Cancer Res 2009, 69:3665-3672.
  • [236]Li S, Wang L, Dorf ME: PKC phosphorylation of TRAF2 mediates IKKalpha/beta recruitment and K63-linked polyubiquitination. Mol Cell 2009, 33:30-42.
  • [237]Zhang L, Blackwell K, Altaeva A, Shi Z, Habelhah H: TRAF2 phosphorylation promotes NF-kappaB-dependent gene expression and inhibits oxidative stress-induced cell death. Mol Biol Cell 2011, 22:128-140.
  • [238]Shen RR, Zhou AY, Kim E, Lim E, Habelhah H, Hahn WC: IkappaB Kinase varepsilon Phosphorylates TRAF2 To Promote Mammary Epithelial Cell Transformation. Mol Cell Biol 2012, 32:4756-4768.
  • [239]Chantzoura E, Prinarakis E, Panagopoulos D, Mosialos G, Spyrou G: Glutaredoxin-1 regulates TRAF6 activation and the IL-1 receptor/TLR4 signalling. Biochem Biophys Res Commun 2010, 403:335-339.
  • [240]Jiang J, Tang H: Mechanism of inhibiting type I interferon induction by hepatitis B virus X protein. Protein Cell 2010, 1:1106-1117.
  • [241]Sweet CR, Conlon J, Golenbock DT, Goguen J, Silverman N: YopJ targets TRAF proteins to inhibit TLR-mediated NF-kappaB, MAPK and IRF3 signal transduction. Cell Microbiol 2007, 9:2700-2715.
  • [242]Alff PJ, Sen N, Gorbunova E, Gavrilovskaya IN, Mackow ER: The NY-1 hantavirus Gn cytoplasmic tail coprecipitates TRAF3 and inhibits cellular interferon responses by disrupting TBK1-TRAF3 complex formation. J Virol 2008, 82:9115-9122.
  • [243]Siu KL, Kok KH, Ng MH, Poon VK, Yuen KY, Zheng BJ, Jin DY: Severe acute respiratory syndrome coronavirus M protein inhibits type I interferon production by impeding the formation of TRAF3.TANK.TBK1/IKKepsilon complex. J Biol Chem 2009, 284:16202-16209.
  • [244]Harte MT, Haga IR, Maloney G, Gray P, Reading PC, Bartlett NW, Smith GL, Bowie A, O’Neill LA: The poxvirus protein A52R targets Toll-like receptor signaling complexes to suppress host defense. J Exp Med 2003, 197:343-351.
  • [245]Devergne O, Hatzivassiliou E, Izumi KM, Kaye KM, Kleijnen MF, Kieff E, Mosialos G: Association of TRAF1, TRAF2, and TRAF3 with an Epstein-Barr virus LMP1 domain important for B-lymphocyte transformation: role in NF-kappaB activation. Mol Cell Biol 1996, 16:7098-7108.
  • [246]Brown KD, Hostager BS, Bishop GA: Differential signaling and tumor necrosis factor receptor-associated factor (TRAF) degradation mediated by CD40 and the Epstein-Barr virus oncoprotein latent membrane protein 1 (LMP1). J Exp Med 2001, 193:943-954.
  • [247]Xie P, Hostager BS, Bishop GA: Requirement for TRAF3 in Signaling by LMP1 But Not CD40 in B Lymphocytes. J Exp Med 2004, 199:661-671.
  • [248]Kraus ZJ, Nakano H, Bishop GA: TRAF5 is a critical mediator of in vitro signals and in vivo functions of LMP1, the viral oncogenic mimic of CD40. Proc Natl Acad Sci USA 2009, 106:17140-17145.
  • [249]Arcipowski KM, Stunz LL, Graham JP, Kraus ZJ, Vanden Bush TJ, Bishop GA: Molecular mechanisms of TNFR-associated factor 6 (TRAF6) utilization by the oncogenic viral mimic of CD40, latent membrane protein 1 (LMP1). J Biol Chem 2011, 286:9948-9955.
  • [250]Thurau M, Everett H, Tapernoux M, Tschopp J, Thome M: The TRAF3-binding site of human molluscipox virus FLIP molecule MC159 is critical for its capacity to inhibit Fas-induced apoptosis. Cell Death Differ 2006, 13:1577-1585.
  • [251]Mishra R, Chhatbar C, Singh SK: HIV-1 Tat C-mediated regulation of tumor necrosis factor receptor-associated factor-3 by microRNA 32 in human microglia. J Neuroinflammation 2012, 9:131. BioMed Central Full Text
  • [252]Hou J, Wang P, Lin L, Liu X, Ma F, An H, Wang Z, Cao X: MicroRNA-146a feedback inhibits RIG-I-dependent Type I IFN production in macrophages by targeting TRAF6, IRAK1, and IRAK2. J Immunol 2009, 183:2150-2158.
  • [253]Paik JH, Jang JY, Jeon YK, Kim WY, Kim TM, Heo DS, Kim CW: MicroRNA-146a downregulates NFkappaB activity via targeting TRAF6 and functions as a tumor suppressor having strong prognostic implications in NK/T cell lymphoma. Clin Cancer Res 2011, 17:4761-4771.
  • [254]Hagemeier SR, Barlow EA, Kleman AA, Kenney SC: The Epstein-Barr virus BRRF1 protein, Na, induces lytic infection in a TRAF2- and p53-dependent manner. J Virol 2011, 85:4318-4329.
  • [255]Guasparri I, Wu H, Cesarman E: The KSHV oncoprotein vFLIP contains a TRAF-interacting motif and requires TRAF2 and TRAF3 for signalling. EMBO Rep 2006, 7:114-119.
  • [256]Liu X, Fitzgerald K, Kurt-Jones E, Finberg R, Knipe DM: Herpesvirus tegument protein activates NF-kappaB signaling through the TRAF6 adaptor protein. Proc Natl Acad Sci USA 2008, 105:11335-11339.
  • [257]Oyoshi MK, Bryce P, Goya S, Pichavant M, Umetsu DT, Oettgen HC, Tsitsikov EN: TNF receptor-associated factor 1 expressed in resident lung cells is required for the development of allergic lung inflammation. J Immunol 2008, 180:1878-1885.
  • [258]Regnier CH, Masson R, Kedinger V, Textoris J, Stoll I, Chenard MP, Dierich A, Tomasetto C, Rio MC: Impaired neural tube closure, axial skeleton malformations, and tracheal ring disruption in TRAF4-deficient mice. Proc Natl Acad Sci USA 2002, 99:5585-5590.
  • [259]Shiels H, Li X, Schumacker PT, Maltepe E, Padrid PA, Sperling A, Thompson CB, Lindsten T: TRAF4 deficiency leads to tracheal malformation with resulting alterations in air flow to the lungs. Am J Pathol 2000, 157:679-688.
  • [260]Blaise S, Kneib M, Rousseau A, Gambino F, Chenard MP, Messadeq N, Muckenstrum M, Alpy F, Tomasetto C, Humeau Y, et al.: In vivo evidence that TRAF4 is required for central nervous system myelin homeostasis. PLoS One 2012, 7:e30917.
  • [261]Piao JH, Hasegawa M, Heissig B, Hattori K, Takeda K, Iwakura Y, Okumura K, Inohara N, Nakano H: Tumor necrosis factor receptor-associated factor (TRAF) 2 controls homeostasis of the colon to prevent spontaneous development of murine inflammatory bowel disease. J Biol Chem 2011, 286:17879-17888.
  • [262]Piao JH, Yagita H, Okumura K, Nakano H: Aberrant accumulation of interleukin-10-secreting neutrophils in TRAF2-deficient mice. Immunol Cell Biol 2012, 90:881-888.
  • [263]He JQ, Zarnegar B, Oganesyan G, Saha SK, Yamazaki S, Doyle SE, Dempsey PW, Cheng G: Rescue of TRAF3-null mice by p100 NF-kappa B deficiency. J Exp Med 2006, 203:2413-2418.
  • [264]Lomaga MA, Yeh WC, Sarosi I, Duncan GS, Furlonger C, Ho A, Morony S, Capparelli C, Van G, Kaufman S, et al.: TRAF6 deficiency results in osteopetrosis and defective interleukin-1, CD40, and LPS signaling. Genes Dev 1999, 13:1015-1024.
  • [265]Naito A, Azuma S, Tanaka S, Miyazaki T, Takaki S, Takatsu K, Nakao K, Nakamura K, Katsuki M, Yamamoto T, et al.: Severe osteopetrosis, defective interleukin-1 signalling and lymph node organogenesis in TRAF6-deficient mice. Genes Cells 1999, 4:353-362.
  • [266]Bryce PJ, Oyoshi MK, Kawamoto S, Oettgen HC, Tsitsikov EN: TRAF1 regulates Th2 differentiation, allergic inflammation and nuclear localization of the Th2 transcription factor, NIP45. Int Immunol 2006, 18:101-111.
  • [267]Yeh WC, Shahinian A, Speiser D, Kraunus J, Billia F, Wakeham A, de la Pompa JL, Ferrick D, Hum B, Iscove N, et al.: Early lethality, functional NF-kappaB activation, and increased sensitivity to TNF-induced cell death in TRAF2-deficient mice. Immunity 1997, 7:715-725.
  • [268]Chen Z, Sheng L, Shen H, Zhao Y, Wang S, Brink R, Rui L: Hepatic TRAF2 regulates glucose metabolism through enhancing glucagon responses. Diabetes 2012, 61:566-573.
  • [269]Xu Y, Cheng G, Baltimore D: Targeted disruption of TRAF3 leads to postnatal lethality and defective T-dependent immune responses. Immunity 1996, 5:407-415.
  • [270]Xie P, Stunz LL, Larison KD, Yang B, Bishop GA: Tumor necrosis factor receptor-associated factor 3 is a critical regulator of B cell homeostasis in secondary lymphoid organs. Immunity 2007, 27:253-267.
  • [271]Moore CR, Liu Y, Shao CS, Covey LR, Morse HC 3rd, Xie P: Specific deletion of TRAF3 in B lymphocytes leads to B lymphoma development in mice. Leukemia 2012, 26:1122-1127.
  • [272]Xie P, Poovassery J, Stunz LL, Smith SM, Schultz ML, Carlin LE, Bishop GA: Enhanced Toll-like receptor (TLR) responses of TNFR-associated factor 3 (TRAF3)-deficient B lymphocytes. J Leukoc Biol 2011, 90:1149-1157.
  • [273]Cherfils-Vicini J, Vingert B, Varin A, Tartour E, Fridman WH, Sautes-Fridman C, Regnier CH, Cremer I: Characterization of immune functions in TRAF4-deficient mice. Immunology 2008, 124:562-574.
  • [274]Nakano H, Sakon S, Koseki H, Takemori T, Tada K, Matsumoto M, Munechika E, Sakai T, Shirasawa T, Akiba H, et al.: Targeted disruption of Traf5 gene causes defects in CD40- and CD27-mediated lymphocyte activation. Proc Natl Acad Sci USA 1999, 96:9803-9808.
  • [275]So T, Salek-Ardakani S, Nakano H, Ware CF, Croft M: TNF receptor-associated factor 5 limits the induction of Th2 immune responses. J Immunol 2004, 172:4292-4297.
  • [276]Shimo Y, Yanai H, Ohshima D, Qin J, Motegi H, Maruyama Y, Hori S, Inoue J, Akiyama T: TRAF6 directs commitment to regulatory T cells in thymocytes. Genes Cells 2011, 16:437-447.
  • [277]Kobayashi T, Walsh PT, Walsh MC, Speirs KM, Chiffoleau E, King CG, Hancock WW, Caamano JH, Hunter CA, Scott P, et al.: TRAF6 is a critical factor for dendritic cell maturation and development. Immunity 2003, 19:353-363.
  • [278]Yang YJ, Chen W, Carrigan SO, Chen WM, Roth K, Akiyama T, Inoue J, Marshall JS, Berman JN, Lin TJ: TRAF6 specifically contributes to FcepsilonRI-mediated cytokine production but not mast cell degranulation. J Biol Chem 2008, 283:32110-32118.
  • [279]Naito A, Yoshida H, Nishioka E, Satoh M, Azuma S, Yamamoto T, Nishikawa S, Inoue J: TRAF6-deficient mice display hypohidrotic ectodermal dysplasia. Proc Natl Acad Sci USA 2002, 99:8766-8771.
  • [280]Kobayashi T, Kim TS, Jacob A, Walsh MC, Kadono Y, Fuentes-Panana E, Yoshioka T, Yoshimura A, Yamamoto M, Kaisho T, et al.: TRAF6 is required for generation of the B-1a B cell compartment as well as T cell-dependent and -independent humoral immune responses. PLoS One 2009, 4:e4736.
  • [281]King CG, Kobayashi T, Cejas PJ, Kim T, Yoon K, Kim GK, Chiffoleau E, Hickman SP, Walsh PT, Turka LA, et al.: TRAF6 is a T cell-intrinsic negative regulator required for the maintenance of immune homeostasis. Nat Med 2006, 12:1088-1092.
  • [282]King CG, Buckler JL, Kobayashi T, Hannah JR, Bassett G, Kim T, Pearce EL, Kim GG, Turka LA, Choi Y: Cutting edge: requirement for TRAF6 in the induction of T cell anergy. J Immunol 2008, 180:34-38.
  • [283]Pearce EL, Walsh MC, Cejas PJ, Harms GM, Shen H, Wang LS, Jones RG, Choi Y: Enhancing CD8 T-cell memory by modulating fatty acid metabolism. Nature 2009, 460:103-107.
  • [284]Cejas PJ, Walsh MC, Pearce EL, Han D, Harms GM, Artis D, Turka LA, Choi Y: TRAF6 inhibits Th17 differentiation and TGF-beta-mediated suppression of IL-2. Blood 2010, 115:4750-4757.
  • [285]Paul PK, Kumar A: TRAF6 coordinates the activation of autophagy and ubiquitin-proteasome systems in atrophying skeletal muscle. Autophagy 2011, 7:555-556.
  • [286]Paul PK, Gupta SK, Bhatnagar S, Panguluri SK, Darnay BG, Choi Y, Kumar A: Targeted ablation of TRAF6 inhibits skeletal muscle wasting in mice. J Cell Biol 2010, 191:1395-1411.
  • [287]Hindi SM, Paul PK, Dahiya S, Mishra V, Bhatnagar S, Kuang S, Choi Y, Kumar A: Reciprocal Interaction between TRAF6 and Notch Signaling Regulates Adult Myofiber Regeneration upon Injury. Mol Cell Biol 2012, 32:4833-4845.
  • [288]Paul PK, Bhatnagar S, Mishra V, Srivastava S, Darnay BG, Choi Y, Kumar A: The E3 ubiquitin ligase TRAF6 intercedes in starvation-induced skeletal muscle atrophy through multiple mechanisms. Mol Cell Biol 2012, 32:1248-1259.
  • [289]Lin WJ, Su YW, Lu YC, Hao Z, Chio II, Chen NJ, Brustle A, Li WY, Mak TW: Crucial role for TNF receptor-associated factor 2 (TRAF2) in regulating NFkappaB2 signaling that contributes to autoimmunity. Proc Natl Acad Sci USA 2012, 108:18354-18359.
  • [290]Arron JR, Pewzner-Jung Y, Walsh MC, Kobayashi T, Choi Y: Regulation of the subcellular localization of tumor necrosis factor receptor-associated factor (TRAF)2 by TRAF1 reveals mechanisms of TRAF2 signaling. J Exp Med 2002, 196:923-934.
  • [291]Missiou A, Kostlin N, Varo N, Rudolf P, Aichele P, Ernst S, Munkel C, Walter C, Stachon P, Sommer B, et al.: Tumor necrosis factor receptor-associated factor 1 (TRAF1) deficiency attenuates atherosclerosis in mice by impairing monocyte recruitment to the vessel wall. Circulation 2010, 121:2033-2044.
  • [292]Missiou A, Rudolf P, Stachon P, Wolf D, Varo N, Aichele P, Colberg C, Hoppe N, Ernst S, Munkel C, et al.: TRAF5 deficiency accelerates atherogenesis in mice by increasing inflammatory cell recruitment and foam cell formation. Circ Res 2010, 107:757-766.
  • [293]Polykratis A, van Loo G, Xanthoulea S, Hellmich M, Pasparakis M: Conditional targeting of tumor necrosis factor receptor-associated factor 6 reveals opposing functions of Toll-like receptor signaling in endothelial and myeloid cells in a mouse model of atherosclerosis. Circulation 2012, 126:1739-1751.
  • [294]Keats JJ, Fonseca R, Chesi M, Schop R, Baker A, Chng WJ, Van Wier S, Tiedemann R, Shi CX, Sebag M, et al.: Promiscuous mutations activate the noncanonical NF-kappaB pathway in multiple myeloma. Cancer Cell 2007, 12:131-144.
  • [295]Annunziata CM, Davis RE, Demchenko Y, Bellamy W, Gabrea A, Zhan F, Lenz G, Hanamura I, Wright G, Xiao W, et al.: Frequent engagement of the classical and alternative NF-kappaB pathways by diverse genetic abnormalities in multiple myeloma. Cancer Cell 2007, 12:115-130.
  • [296]Demchenko YN, Glebov OK, Zingone A, Keats JJ, Bergsagel PL, Kuehl WM: Classical and/or alternative NF-kappaB pathway activation in multiple myeloma. Blood 2010, 115:3541-3552.
  • [297]Du J, Huo J, Shi J, Yuan Z, Zhang C, Fu W, Jiang H, Yi Q, Hou J: Polymorphisms of nuclear factor-kappaB family genes are associated with development of multiple myeloma and treatment outcome in patients receiving bortezomib-based regimens. Haematologica 2011, 96:729-737.
  • [298]Nagel I, Bug S, Tonnies H, Ammerpohl O, Richter J, Vater I, Callet-Bauchu E, Calasanz MJ, Martinez-Climent JA, Bastard C, et al.: Biallelic inactivation of TRAF3 in a subset of B-cell lymphomas with interstitial del(14)(q24.1q32.33). Leukemia 2009, 23:2153-2155.
  • [299]Rossi D, Deaglio S, Dominguez-Sola D, Rasi S, Vaisitti T, Agostinelli C, Spina V, Bruscaggin A, Monti S, Cerri M, et al.: Alteration of BIRC3 and multiple other NF-{kappa}B pathway genes in splenic marginal zone lymphoma. Blood 2011, 118:4930-4934.
  • [300]Braggio E, Keats JJ, Leleu X, Van Wier S, Jimenez-Zepeda VH, Valdez R, Schop RF, Price-Troska T, Henderson K, Sacco A, et al.: Identification of copy number abnormalities and inactivating mutations in two negative regulators of nuclear factor-kappaB signaling pathways in Waldenstrom’s macroglobulinemia. Cancer Res 2009, 69:3579-3588.
  • [301]Otto C, Giefing M, Massow A, Vater I, Gesk S, Schlesner M, Richter J, Klapper W, Hansmann ML, Siebert R, et al.: Genetic lesions of the TRAF3 and MAP3K14 genes in classical Hodgkin lymphoma. Br J Haematol 2012, 157:702-708.
  • [302]Compagno M, Lim WK, Grunn A, Nandula SV, Brahmachary M, Shen Q, Bertoni F, Ponzoni M, Scandurra M, Califano A, et al.: Mutations of multiple genes cause deregulation of NF-kappaB in diffuse large B-cell lymphoma. Nature 2009, 459:717-721.
  • [303]Cerhan JR, Ansell SM, Fredericksen ZS, Kay NE, Liebow M, Call TG, Dogan A, Cunningham JM, Wang AH, Liu-Mares W, et al.: Genetic variation in 1253 immune and inflammation genes and risk of non-Hodgkin lymphoma. Blood 2007, 110:4455-4463.
  • [304]Camilleri-Broet S, Cremer I, Marmey B, Comperat E, Viguie F, Audouin J, Rio MC, Fridman WH, Sautes-Fridman C, Regnier CH: TRAF4 overexpression is a common characteristic of human carcinomas. Oncogene 2007, 26:142-147.
  • [305]Starczynowski DT, Lockwood WW, Delehouzee S, Chari R, Wegrzyn J, Fuller M, Tsao MS, Lam S, Gazdar AF, Lam WL, et al.: TRAF6 is an amplified oncogene bridging the RAS and NF-kappaB pathways in human lung cancer. J Clin Invest 2011, 121:4095-4105.
  • [306]Meng Q, Zheng M, Liu H, Song C, Zhang W, Yan J, Qin L, Liu X: TRAF6 regulates proliferation, apoptosis, and invasion of osteosarcoma cell. Mol Cell Biochem 2012, 371:177-186.
  • [307]Lee YH, Song GG: Associations between TNFSF4 and TRAF1-C5 gene polymorphisms and systemic lupus erythematosus: a meta-analysis. Hum Immunol 2012, 73:1050-1054.
  • [308]Kurreeman FA, Goulielmos GN, Alizadeh BZ, Rueda B, Houwing-Duistermaat J, Sanchez E, Bevova M, Radstake TR, Vonk MC, Galanakis E, et al.: The TRAF1-C5 region on chromosome 9q33 is associated with multiple autoimmune diseases. Ann Rheum Dis 2010, 69:696-699.
  • [309]Potter C, Eyre S, Cope A, Worthington J, Barton A: Investigation of association between the TRAF family genes and RA susceptibility. Ann Rheum Dis 2007, 66:1322-1326.
  • [310]Plenge RM, Seielstad M, Padyukov L, Lee AT, Remmers EF, Ding B, Liew A, Khalili H, Chandrasekaran A, Davies LR, et al.: TRAF1–C5 as a risk locus for rheumatoid arthritis–a genomewide study. N Engl J Med 2007, 357:1199-1209.
  • [311]Zervou MI, Sidiropoulos P, Petraki E, Vazgiourakis V, Krasoudaki E, Raptopoulou A, Kritikos H, Choustoulaki E, Boumpas DT, Goulielmos GN: Association of a TRAF1 and a STAT4 gene polymorphism with increased risk for rheumatoid arthritis in a genetically homogeneous population. Hum Immunol 2008, 69:567-571.
  • [312]Perez De Diego R, Sancho-Shimizu V, Lorenzo L, Puel A, Plancoulaine S, Picard C, Herman M, Cardon A, Durandy A, Bustamante J, et al.: Human TRAF3 adaptor molecule deficiency leads to impaired Toll-like receptor 3 response and susceptibility to herpes simplex encephalitis. Immunity 2010, 33:400-411.
  • [313]Fujikawa H, Farooq M, Fujimoto A, Ito M, Shimomura Y: Functional studies for the TRAF6 mutation associated with hypohidrotic ectodermal dysplasia. Br J Dermatol 2012.
  • [314]Durkop H, Hirsch B, Hahn C, Foss HD, Stein H: Differential expression and function of A20 and TRAF1 in Hodgkin lymphoma and anaplastic large cell lymphoma and their induction by CD30 stimulation. J Pathol 2003, 200:229-239.
  • [315]Zapata JM, Krajewska M, Krajewski S, Kitada S, Welsh K, Monks A, McCloskey N, Gordon J, Kipps TJ, Gascoyne RD, et al.: TNFR-associated factor family protein expression in normal tissues and lymphoid malignancies. J Immunol 2000, 165:5084-5096.
  • [316]Munzert G, Kirchner D, Stobbe H, Bergmann L, Schmid RM, Dohner H, Heimpel H: Tumor necrosis factor receptor-associated factor 1 gene overexpression in B-cell chronic lymphocytic leukemia: analysis of NF-kappa B/Rel-regulated inhibitors of apoptosis. Blood 2002, 100:3749-3756.
  • [317]Savage KJ, Monti S, Kutok JL, Cattoretti G, Neuberg D, De Leval L, Kurtin P, Dal Cin P, Ladd C, Feuerhake F, et al.: The molecular signature of mediastinal large B-cell lymphoma differs from that of other diffuse large B-cell lymphomas and shares features with classical Hodgkin lymphoma. Blood 2003, 102:3871-3879.
  • [318]Bieche I, Tomasetto C, Regnier CH, Moog-Lutz C, Rio MC, Lidereau R: Two distinct amplified regions at 17q11-q21 involved in human primary breast cancer. Cancer Res 1996, 56:3886-3890.
  • [319]Krajewska M, Krajewski S, Zapata JM, Van Arsdale T, Gascoyne RD, Berern K, McFadden D, Shabaik A, Hugh J, Reynolds A, et al.: TRAF-4 expression in epithelial progenitor cells. Analysis in normal adult, fetal, and tumor tissues. Am J Pathol 1998, 152:1549-1561.
  • [320]Gu X, Coates PJ, MacCallum SF, Boldrup L, Sjostrom B, Nylander K: TRAF4 is potently induced by TAp63 isoforms and localised according to differentiation in SCCHN. Cancer Biol Ther 2007, 6:1986-1990.
  • [321]Rozan LM, El-Deiry WS: Identification and characterization of proteins interacting with Traf4, an enigmatic p53 target. Cancer Biol Ther 2006, 5:1228-1235.
  • [322]Sax JK, El-Deiry WS: Identification and characterization of the cytoplasmic protein TRAF4 as a p53-regulated proapoptotic gene. J Biol Chem 2003, 278:36435-36444.
  • [323]Zhong L, Cao F, You Q: Effect of TRAF6 on the biological behavior of human lung adenocarcinoma cell. Tumour Biol 2013, 34:231-239.
  • [324]Rajabi P, Alaee M, Mousavizadeh K, Samadikuchaksaraei A: Altered expression of TNFSF4 and TRAF2 mRNAs in peripheral blood mononuclear cells in patients with systemic lupus erythematosus: association with atherosclerotic symptoms and lupus nephritis. Inflamm Res 2012, 61:1347-1354.
  • [325]Wisniewski SA, Trzeciak WH: A new mutation resulting in the truncation of the TRAF6-interacting domain of XEDAR: a possible novel cause of hypohidrotic ectodermal dysplasia. J Med Genet 2012, 49:499-501.
  • [326]Zucchelli S, Codrich M, Marcuzzi F, Pinto M, Vilotti S, Biagioli M, Ferrer I, Gustincich S: TRAF6 promotes atypical ubiquitination of mutant DJ-1 and alpha-synuclein and is localized to Lewy bodies in sporadic Parkinson’s disease brains. Hum Mol Genet 2010, 19:3759-3770.
  • [327]Zucchelli S, Marcuzzi F, Codrich M, Agostoni E, Vilotti S, Biagioli M, Pinto M, Carnemolla A, Santoro C, Gustincich S, et al.: Tumor necrosis factor receptor-associated factor 6 (TRAF6) associates with huntingtin protein and promotes its atypical ubiquitination to enhance aggregate formation. J Biol Chem 2011, 286:25108-25117.
  • [328]Bishop GA, Xie P: Multiple roles of TRAF3 signaling in lymphocyte function. Immunol Res 2007, 39:22-32.
  • [329]Watts TH, Lin GH, Wang C, McPherson AJ, Snell LM, Sabbagh L: Role of 4-1BBL and TRAF1 in the CD8 T cell response to influenza virus and HIV. Adv Exp Med Biol 2011, 691:177-186.
  • [330]Snell LM, Lin GH, McPherson AJ, Moraes TJ, Watts TH: T-cell intrinsic effects of GITR and 4-1BB during viral infection and cancer immunotherapy. Immunol Rev 2011, 244:197-217.
  • [331]Wang C, Watts TH: Maintaining the balance: costimulatory TNFRs and control of HIV. Cytokine Growth Factor Rev 2012, 23:245-254.
  • [332]Wicovsky A, Henkler F, Salzmann S, Scheurich P, Kneitz C, Wajant H: Tumor necrosis factor receptor-associated factor-1 enhances proinflammatory TNF receptor-2 signaling and modifies TNFR1-TNFR2 cooperation. Oncogene 2009, 28:1769-1781.
  • [333]Wicovsky A, Salzmann S, Roos C, Ehrenschwender M, Rosenthal T, Siegmund D, Henkler F, Gohlke F, Kneitz C, Wajant H: TNF-like weak inducer of apoptosis inhibits proinflammatory TNF receptor-1 signaling. Cell Death Differ 2009, 16:1445-1459.
  • [334]Ye H, Arron JR, Lamothe B, Cirilli M, Kobayashi T, Shevde NK, Segal D, Dzivenu OK, Vologodskaia M, Yim M, et al.: Distinct molecular mechanism for initiating TRAF6 signalling. Nature 2002, 418:443-447.
  • [335]Manna SK, Babajan B, Raghavendra PB, Raviprakash N, Sureshkumar C: Inhibiting TRAF2-mediated activation of NF-kappaB facilitates induction of AP-1. J Biol Chem 2010, 285:11617-11627.
  文献评价指标  
  下载次数:57次 浏览次数:101次