期刊论文详细信息
Cell & Bioscience
Strategies for gene disruption in Drosophila
Chih-Chiang Chan1  Yu-Yun Chang2  Shih-Ching Lin3 
[1] Graduate Institute of Brain and Mind Sciences, National Taiwan University, No.1, Sec. 1, Jen-Ai Rd., Zhongzheng Dist, Taipei 100, Taiwan;Graduate Institute of Molecular Medicine, National Taiwan University, No.1, Sec. 1, Jen-Ai Rd., Zhongzheng Dist, Taipei 100, Taiwan;Graduate Institute of Physiology, National Taiwan University, No.1, Sec. 1, Jen-Ai Rd., Zhongzheng Dist, Taipei 100, Taiwan
关键词: Genome editing;    Gene knock-out;    Homologous recombination;    Transposons;    Cas9;    CRISPR;    Drosophila;   
Others  :  1149221
DOI  :  10.1186/2045-3701-4-63
 received in 2014-08-27, accepted in 2014-09-29,  发布年份 2014
PDF
【 摘 要 】

Drosophila melanogaster has been a classic model organism for the studies of genetics. More than 15,000 Drosophila genes have been annotated since the entire genome was sequenced; however, many of them still lack functional characterization. Various gene-manipulating approaches in Drosophila have been developed for the function analysis of genes. Here, we summarize some representative strategies utilized for Drosophila gene targeting, from the unbiased ethyl methanesulfonate (EMS) mutagenesis and transposable element insertion, to insertional/replacement homologous recombination and site-specific nucleases such as the zinc-finger nuclease (ZFN), the transcription activator-like effector nuclease (TALEN) and the CRISPR (clustered regularly interspaced short palindromic repeats)/Cas9 system. Specifically, we evaluate the pros and cons of each technique in a historical perspective. This review discuss important factors that should be taken into consideration for the selection of a strategy that best fits the specific needs of a gene knockout project.

【 授权许可】

   
2014 Lin et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150405032506819.pdf 883KB PDF download
Figure 3. 56KB Image download
Figure 2. 37KB Image download
Figure 1. 55KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

【 参考文献 】
  • [1]Reiter LT, Potocki L, Chien S, Gribskov M, Bier E: A systematic analysis of human disease-associated gene sequences in Drosophila melanogaster. Genome Res 2001, 11:1114-1125.
  • [2]Pandey UB, Nichols CD: Human disease models in Drosophila melanogaster and the role of the fly in therapeutic drug discovery. Pharmacol Rev 2011, 63:411-436.
  • [3]Zou S, Meadows S, Sharp L, Jan LY, Jan YN: Genome-wide study of aging and oxidative stress response in Drosophila melanogaster. Proc Natl Acad Sci U S A 2000, 97:13726-13731.
  • [4]Baker KD, Thummel CS: Diabetic larvae and obese flies-emerging studies of metabolism in Drosophila. Cell Metab 2007, 6:257-266.
  • [5]Lu B, Vogel H: Drosophila models of neurodegenerative diseases. Annu Rev Pathol 2009, 4:315-342.
  • [6]Polesello C, Roch F, Gobert V, Haenlin M, Waltzer L: Modeling cancers in drosophila. Prog Mol Biol Transl Sci 2011, 100:51-82.
  • [7]Adams MD, Celniker SE, Holt RA, Evans CA, Gocayne JD, Amanatides PG, Scherer SE, Li PW, Hoskins RA, Galle RF, George RA, Lewis SE, Richards S, Ashburner M, Henderson SN, Sutton GG, Wortman JR, Yandell MD, Zhang Q, Chen LX, Brandon RC, Rogers YH, Blazej RG, Champe M, Pfeiffer BD, Wan KH, Doyle C, Baxter EG, Helt G, Nelson CR, et al.: The genome sequence of Drosophila melanogaster. Science (New York, NY) 2000, 287:2185-2195.
  • [8]Weng MP, Liao BY: DroPhEA: drosophila phenotype enrichment analysis for insect functional genomics. Bioinformatics (Oxford, England) 2011, 27:3218-3219.
  • [9]St Johnston D: The art and design of genetic screens: drosophila melanogaster. Nat Rev Genet 2002, 3:176-188.
  • [10]Bauer H, Demerec M, Kaufmann BP: X-Ray Induced Chromosomal Alterations in Drosophila Melanogaster. Genetics 1938, 23:610-630.
  • [11]Xie HB, Golic KG: Gene deletions by ends-in targeting in Drosophila melanogaster. Genetics 2004, 168:1477-1489.
  • [12]Gong WJ, Golic KG: Ends-out, or replacement, gene targeting in Drosophila. Proc Natl Acad Sci U S A 2003, 100:2556-2561.
  • [13]Bibikova M, Golic M, Golic KG, Carroll D: Targeted chromosomal cleavage and mutagenesis in Drosophila using zinc-finger nucleases. Genetics 2002, 161:1169-1175.
  • [14]Jackson SP: Sensing and repairing DNA double-strand breaks. Carcinogenesis 2002, 23:687-696.
  • [15]Liu J, Li C, Yu Z, Huang P, Wu H, Wei C, Zhu N, Shen Y, Chen Y, Zhang B, Deng WM, Jiao R: Efficient and specific modifications of the Drosophila genome by means of an easy TALEN strategy. J Genet Genom = Yi chuan xue bao 2012, 39:209-215.
  • [16]Bassett AR, Tibbit C, Ponting CP, Liu JL: Highly efficient targeted mutagenesis of Drosophila with the CRISPR/Cas9 system. Cell Rep 2013, 4:220-228.
  • [17]Gratz SJ, Cummings AM, Nguyen JN, Hamm DC, Donohue LK, Harrison MM, Wildonger J, O'Connor-Giles KM: Genome engineering of Drosophila with the CRISPR RNA-guided Cas9 nuclease. Genetics 2013, 194:1029-1035.
  • [18]Yu Z, Ren M, Wang Z, Zhang B, Rong YS, Jiao R, Gao G: Highly efficient genome modifications mediated by CRISPR/Cas9 in Drosophila. Genetics 2013, 195:289-291.
  • [19]Pastink A, Heemskerk E, Nivard MJ, van Vliet CJ, Vogel EW: Mutational specificity of ethyl methanesulfonate in excision-repair-proficient and -deficient strains of Drosophila melanogaster. Mol Gen Genet: MGG 1991, 229:213-218.
  • [20]Blumenstiel JP, Noll AC, Griffiths JA, Perera AG, Walton KN, Gilliland WD, Hawley RS, Staehling-Hampton K: Identification of EMS-induced mutations in Drosophila melanogaster by whole-genome sequencing. Genetics 2009, 182:25-32.
  • [21]Chen D, Ahlford A, Schnorrer F, Kalchhauser I, Fellner M, Viragh E, Kiss I, Syvanen AC, Dickson BJ: High-resolution, high-throughput SNP mapping in Drosophila melanogaster. Nat Methods 2008, 5:323-329.
  • [22]Liao GC, Rehm EJ, Rubin GM: Insertion site preferences of the P transposable element in Drosophila melanogaster. Proc Natl Acad Sci U S A 2000, 97:3347-3351.
  • [23]Lewis A, Brookfield JY: Movement of Drosophila melanogaster transposable elements other than P elements in a P-M hybrid dysgenic cross. Mol Gen Genet MGG 1987, 208:506-510.
  • [24]Cooley L, Kelley R, Spradling A: Insertional mutagenesis of the Drosophila genome with single P elements. Science (New York, NY) 1988, 239:1121-1128.
  • [25]Zhai RG, Hiesinger PR, Koh TW, Verstreken P, Schulze KL, Cao Y, Jafar-Nejad H, Norga KK, Pan H, Bayat V, Greenbaum MP, Bellen HJ: Mapping Drosophila mutations with molecularly defined P element insertions. Proc Natl Acad Sci U S A 2003, 100:10860-10865.
  • [26]Ochman H, Gerber AS, Hartl DL: Genetic applications of an inverse polymerase chain reaction. Genetics 1988, 120:621-623.
  • [27]Potter CJ, Luo L: Splinkerette PCR for mapping transposable elements in Drosophila. PLoS One 2010, 5:e10168.
  • [28]Tower J, Karpen GH, Craig N, Spradling AC: Preferential transposition of Drosophila P elements to nearby chromosomal sites. Genetics 1993, 133:347-359.
  • [29]Spradling AC, Bellen HJ, Hoskins RA: Drosophila P elements preferentially transpose to replication origins. Proc Natl Acad Sci U S A 2011, 108:15948-15953.
  • [30]Bentley A, MacLennan B, Calvo J, Dearolf CR: Targeted recovery of mutations in Drosophila. Genetics 2000, 156:1169-1173.
  • [31]Winkler S, Schwabedissen A, Backasch D, Bokel C, Seidel C, Bonisch S, Furthauer M, Kuhrs A, Cobreros L, Brand M, Gonzalez-Gaitan M: Target-selected mutant screen by TILLING in Drosophila. Genome Res 2005, 15:718-723.
  • [32]Bellen HJ, Levis RW, He Y, Carlson JW, Evans-Holm M, Bae E, Kim J, Metaxakis A, Savakis C, Schulze KL, Hoskins RA, Spradling AC: The Drosophila gene disruption project: progress using transposons with distinctive site specificities. Genetics 2011, 188:731-743.
  • [33]Venken KJ, Schulze KL, Haelterman NA, Pan H, He Y, Evans-Holm M, Carlson JW, Levis RW, Spradling AC, Hoskins RA, Bellen HJ: MiMIC: a highly versatile transposon insertion resource for engineering Drosophila melanogaster genes. Nat Methods 2011, 8:737-743.
  • [34]Creighton HB, McClintock B: A correlation of cytological and genetical crossing-over in Zea Mays. Proc Natl Acad Sci U S A 1931, 17:492-497.
  • [35]Lawrence JG, Retchless AC: The interplay of homologous recombination and horizontal gene transfer in bacterial speciation. Meth Mol Biol (Clifton, NJ) 2009, 532:29-53.
  • [36]Dymecki SM: Flp recombinase promotes site-specific DNA recombination in embryonic stem cells and transgenic mice. Proc Natl Acad Sci U S A 1996, 93:6191-6196.
  • [37]Bellaiche Y, Mogila V, Perrimon N: I-SceI endonuclease, a new tool for studying DNA double-strand break repair mechanisms in Drosophila. Genetics 1999, 152:1037-1044.
  • [38]Rong YS, Titen SW, Xie HB, Golic MM, Bastiani M, Bandyopadhyay P, Olivera BM, Brodsky M, Rubin GM, Golic KG: Targeted mutagenesis by homologous recombination in D. melanogaster. Genes Dev 2002, 16:1568-1581.
  • [39]Huang J, Zhou W, Watson AM, Jan YN, Hong Y: Efficient ends-out gene targeting in Drosophila. Genetics 2008, 180:703-707.
  • [40]Zhou W, Huang J, Watson AM, Hong Y: W::Neo: a novel dual-selection marker for high efficiency gene targeting in Drosophila. PLoS One 2012, 7:e31997.
  • [41]Chan CC, Scoggin S, Hiesinger PR, Buszczak M: Combining recombineering and ends-out homologous recombination to systematically characterize Drosophila gene families: Rab GTPases as a case study. Communicative Integr Biol 2012, 5:179-183.
  • [42]Gao G, McMahon C, Chen J, Rong YS: A powerful method combining homologous recombination and site-specific recombination for targeted mutagenesis in Drosophila. Proc Natl Acad Sci U S A 2008, 105:13999-14004.
  • [43]Venken KJ, Carlson JW, Schulze KL, Pan H, He Y, Spokony R, Wan KH, Koriabine M, de Jong PJ, White KP, Bellen HJ, Hoskins RA: Versatile P[acman] BAC libraries for transgenesis studies in Drosophila melanogaster. Nat Methods 2009, 6:431-434.
  • [44]Chan CC, Scoggin S, Wang D, Cherry S, Dembo T, Greenberg B, Jin EJ, Kuey C, Lopez A, Mehta SQ, Perkins TJ, Brankatschk M, Rothenfluh A, Buszczak M, Hiesinger PR: Systematic discovery of Rab GTPases with synaptic functions in Drosophila. Curr Biol 2011, 21:1704-1715.
  • [45]Moore JK, Haber JE: Cell cycle and genetic requirements of two pathways of nonhomologous end-joining repair of double-strand breaks in Saccharomyces cerevisiae. Mol Cell Biol 1996, 16:2164-2173.
  • [46]Durai S, Mani M, Kandavelou K, Wu J, Porteus MH, Chandrasegaran S: Zinc finger nucleases: custom-designed molecular scissors for genome engineering of plant and mammalian cells. Nucleic Acids Res 2005, 33:5978-5990.
  • [47]Beumer K, Bhattacharyya G, Bibikova M, Trautman JK, Carroll D: Efficient gene targeting in Drosophila with zinc-finger nucleases. Genetics 2006, 172:2391-2403.
  • [48]Carroll D, Beumer KJ, Trautman JK: High-efficiency gene targeting in Drosophila with zinc finger nucleases. Meth Mol Biol (Clifton, NJ) 2010, 649:271-280.
  • [49]Chen S, Oikonomou G, Chiu CN, Niles BJ, Liu J, Lee DA, Antoshechkin I, Prober DA: A large-scale in vivo analysis reveals that TALENs are significantly more mutagenic than ZFNs generated using context-dependent assembly. Nucleic Acids Res 2013, 41:2769-2778.
  • [50]Wood AJ, Lo TW, Zeitler B, Pickle CS, Ralston EJ, Lee AH, Amora R, Miller JC, Leung E, Meng X, Zhang L, Rebar EJ, Gregory PD, Urnov FD, Meyer BJ: Targeted genome editing across species using ZFNs and TALENs. Science (New York, NY) 2011, 333:307.
  • [51]Pattanayak V, Ramirez CL, Joung JK, Liu DR: Revealing off-target cleavage specificities of zinc-finger nucleases by in vitro selection. Nat Methods 2011, 8:765-770.
  • [52]Beumer KJ, Trautman JK, Christian M, Dahlem TJ, Lake CM, Hawley RS, Grunwald DJ, Voytas DF, Carroll D: Comparing zinc finger nucleases and transcription activator-like effector nucleases for gene targeting in Drosophila. G3 (Bethesda, Md) 2013, 3:1717-1725.
  • [53]Boch J, Scholze H, Schornack S, Landgraf A, Hahn S, Kay S, Lahaye T, Nickstadt A, Bonas U: Breaking the code of DNA binding specificity of TAL-type III effectors. Science (New York, NY) 2009, 326:1509-1512.
  • [54]Morbitzer R, Romer P, Boch J, Lahaye T: Regulation of selected genome loci using de novo-engineered transcription activator-like effector (TALE)-type transcription factors. Proc Natl Acad Sci U S A 2010, 107:21617-21622.
  • [55]Ishino Y, Shinagawa H, Makino K, Amemura M, Nakata A: Nucleotide sequence of the iap gene, responsible for alkaline phosphatase isozyme conversion in Escherichia coli, and identification of the gene product. J Bacteriol 1987, 169:5429-5433.
  • [56]Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna JA, Charpentier E: A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science (New York, NY) 2012, 337:816-821.
  • [57]Mali P, Aach J, Stranges PB, Esvelt KM, Moosburner M, Kosuri S, Yang L, Church GM: CAS9 transcriptional activators for target specificity screening and paired nickases for cooperative genome engineering. Nat Biotechnol 2013, 31:833-838.
  • [58]Cong L, Ran FA, Cox D, Lin S, Barretto R, Habib N, Hsu PD, Wu X, Jiang W, Marraffini LA, Zhang F: Multiplex genome engineering using CRISPR/Cas systems. Science (New York, NY) 2013, 339:819-823.
  • [59]Wang T, Wei JJ, Sabatini DM, Lander ES: Genetic screens in human cells using the CRISPR-Cas9 system. Science (New York, NY) 2014, 343:80-84.
  • [60]Gratz SJ, Ukken FP, Rubinstein CD, Thiede G, Donohue LK, Cummings AM, O'Connor-Giles KM: Highly Specific and Efficient CRISPR/Cas9-Catalyzed Homology-Directed Repair in Drosophila. Genetics 2014, 196:961-971.
  • [61]Kondo S, Ueda R: Highly improved gene targeting by germline-specific Cas9 expression in Drosophila. Genetics 2013, 195:715-721.
  • [62]Xue Z, Ren M, Wu M, Dai J, Rong YS, Gao G: Efficient gene knock-out and knock-in with transgenic Cas9 in Drosophila. G3 (Bethesda, Md) 2014, 4:925-929.
  • [63]Cradick TJ, Fine EJ, Antico CJ, Bao G: CRISPR/Cas9 systems targeting beta-globin and CCR5 genes have substantial off-target activity. Nucleic Acids Res 2013, 41:9584-9592.
  • [64]Pattanayak V, Lin S, Guilinger JP, Ma E, Doudna JA, Liu DR: High-throughput profiling of off-target DNA cleavage reveals RNA-programmed Cas9 nuclease specificity. Nat Biotechnol 2013, 31:839-843.
  • [65]Kondo S: New horizons in genome engineering of Drosophila melanogaster. Genes Genet Syst 2014, 89:3-8.
  文献评价指标  
  下载次数:29次 浏览次数:14次