期刊论文详细信息
BMC Biotechnology
Less is more: strategies to remove marker genes from transgenic plants
Yuan-Yeu Yau2  C Neal Stewart1 
[1] Department of Plant Sciences, University of Tennessee, Knoxville, TN 37996, USA
[2] Department of Natural Sciences, Northeastern State University, Broken Arrow, OK 74014, USA
关键词: Zinc finger nuclease;    Transposons;    TAL effector nucleases;    Site-specific recombination;    Negative selection;    Meganuclease;    Marker-free;    Intra-chromosomal recombination;    Homologous recombination;    Co-transformation;    Clean-gene technology;    Biosafety;   
Others  :  1123178
DOI  :  10.1186/1472-6750-13-36
 received in 2012-09-25, accepted in 2013-03-05,  发布年份 2013
PDF
【 摘 要 】

Selectable marker genes (SMGs) and selection agents are useful tools in the production of transgenic plants by selecting transformed cells from a matrix consisting of mostly untransformed cells. Most SMGs express protein products that confer antibiotic- or herbicide resistance traits, and typically reside in the end product of genetically-modified (GM) plants. The presence of these genes in GM plants, and subsequently in food, feed and the environment, are of concern and subject to special government regulation in many countries. The presence of SMGs in GM plants might also, in some cases, result in a metabolic burden for the host plants. Their use also prevents the re-use of the same SMG when a second transformation scheme is needed to be performed on the transgenic host. In recent years, several strategies have been developed to remove SMGs from GM products while retaining the transgenes of interest. This review describes the existing strategies for SMG removal, including the implementation of site specific recombination systems, TALENs and ZFNs. This review discusses the advantages and disadvantages of existing SMG-removal strategies and explores possible future research directions for SMG removal including emerging technologies for increased precision for genome modification.

【 授权许可】

   
2013 Yau and Stewart; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150216015623323.pdf 1941KB PDF download
Figure 9. 39KB Image download
Figure 8. 46KB Image download
Figure 7. 37KB Image download
Figure 6. 37KB Image download
Figure 5. 72KB Image download
Figure 4. 37KB Image download
Figure 3. 36KB Image download
Figure 2. 55KB Image download
Figure 1. 64KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

Figure 7.

Figure 8.

Figure 9.

【 参考文献 】
  • [1]Cohen SN, Chang ACY, Boyer HW, Helling RB: Construction of biologically functional bacterial plasmids in vitro. Proc Natl Acad Sci USA 1973, 70:3240-3244.
  • [2]Herrera-Estrella L, Depicker A, van Montagu M, Schell J: Expression of chimaeric genes transfered into plant cells using a Ti-plasmid-derived vector. Nature 1983, 303:209-213.
  • [3]Bevan MW, Flavell RB, Chilton MD: A chimaeric antibiotic resistance gene as a selectable marker for plant cell transformation. Nature 1983, 304:184-187.
  • [4]Fraley RT, Rogers SG, Horsch RB, Sanders PR, Flick JS, Adams SP, Bittner ML, Brand LA, Fink CL, Fry JS, Galluppi GR, Goldberg SB, Hoffmann NL, Woo SC: Expression of bacterial genes in plant cells. Proc Natl Acad Sci USA 1983, 80:4803-4807.
  • [5]Murai N, Kemp JD, Sutton DW, Murray MG, Slightom JL, Merlo DJ, Reichert NA, Sengupta-Gopalan C, Stock CA, Barker RF, Hall TC: Phaseolin gene from bean is expressed after transfer to sunflower via tumor-inducing plasmid vectors. Science 1983, 222:476-482.
  • [6]Farre G, Ramessar K, Twyman RM, Capell T, Christou P: The humanitarian impact of plant biotechnology: recent breakthroughs vs bottlenecks for adoption. Curr Opin Plant Biol 2010, 13:219-225.
  • [7]Miki B, McHugh S: Selectable marker genes in transgenic plants: applications, alternatives and biosafety. J Biotechnol 2004, 107:193-232.
  • [8]Mason P, Braun L, Warwick SI, Zhu B, Stewart CN Jr: Transgenic Bt-producing Brassica napus: Plutella xylostella selection pressure and fitness of weedy relatives. Environ Biosafety Res 2003, 2:263-276.
  • [9]Kwit C, Moon HS, Warwick SI, Stewart CN Jr: Transgene introgression in, crop relatives: molecular evidence and mitigation strategies. Trends Biotechnol 2011, 29:284-293.
  • [10]Ellstrand NC, Marshall DL: Interpopulation gene flow by pollen in wild radish, Raphanus sativus. Am Nat 1985, 126:606-616.
  • [11]Warwick SI, Simard MJ, Légère A, Beckie HJ, Braun L, Zhu B, Mason P, Séguin-Swartz G, Stewart CN: Hybridization between transgenic Brassica napus L. and its wild relatives: Brassica rapa L., Raphanus raphanistrum L., Sinapis arvensis L., and Erucastrum gallicum (Willd.) O.E, Schulz. Theor Appl Genet 2003, 107:528-539.
  • [12]Londo JP, Bautista NS, Sagers CL, Lee EH, Watrud LS: Glyphosate drift promotes changes in fitness and transgene gene flow in canola (Brassica napus) and hybrids. Ann Bot-London 2010, 106:957-965.
  • [13]Fuchs RL, Ream JE, Hammond BG, Naylor MW, Leimgruber RM, Berberich SA: Safety assessment of the neomycin phosphotransferase II (NPTII) protein. Nat Biotechnol 1993, 11:1543-1547.
  • [14]Rong J, Lu BR, Song Z, Su J, Snow AA, Zhang X, Sun S, Chen R, Wang F: Dramatic reduction of crop-to-crop gene flow within a short distance from transgenic rice fields. New Phytol 2007, 173:346-353.
  • [15]Sugita K, Matsunaga E, Kasahara T, Ebinuma H: Transgene stacking in plants in the absence of sexual crossing. Mol Breed 2000, 6:529-536.
  • [16]RamanaRao MV, Parameswari C, Sripriya R, Veluthambi K: Transgene stacking and marker elimination in transgenic rice by sequential Agrobacterium-mediated co-transformation with the same selectable marker gene. Plant Cell Rep 2011, 30:1241-1252.
  • [17]Abuin A, Bradley A: Recycling selectable markers in mouse embryonic stem cells. Mol Cell Biol 1996, 16:1851-1856.
  • [18]Steiger MG, Vitikainen M, Uskonen P, Brunner K, Adam G, Pakula T, Penttilä M, Saloheimo M, Mach RL, Mach-Aigner AR: Transformation system for Hypocrea jecorina (Trichoderma reesei) that favors homologous integration and employs reusable bidirectionally selectable markers. Appl Environ Microbiol 2011, 77:114-121.
  • [19]Khan MS, Maliga P: Fluorescent antibiotic resistance marker to track plastid transformation in higher plants. Nat Biotechnol 1999, 17:910-915.
  • [20]Urbanski WM, Condie BG: Textpresso site-specific recombinases: a text-mining server for the recombinase literature including Cre mice and conditional alleles. Genesis 2009, 47:842-846.
  • [21]Ow DW: GM Maize from site-specific recombination technology, what next? Curr Opin Biotechnol 2007, 18:115-120.
  • [22]De Vetten N, Wolters AM, Raemakers K, van der Meer I, ter Stege R, Heeres E, Heeres P, Visser R: A transformation method for obtaining marker-free plants of a cross-pollinating and vegetatively propagated crop. Nat Biotechnol 2003, 21:439-442.
  • [23]Holme IB, Brinch-Pedersen H, Lange M, Holm PB: Transformation of barley (Hordeum vulgare L.) by Agrobacterium tumefaciens infection of in vitro cultured ovules. Plant Cell Rep 2006, 25:1325-1335.
  • [24]Kim MS, Kim HS, Kim HN, Kim YS, Baek KH, Park YI, Joung H, Jeon JH: Growth and tuberization of transgenic potato plants expressing sense and antisense sequences of Cu/Zn superoxide dismutase from lily chloroplasts. J Plant Biol 2007, 50:490-495.
  • [25]Li B, Xie C, Qiu H: Production of selectable marker-free transgenic tobacco plants using a non-selection approach: chimerism or escape, transgene inheritance, and efficiency. Plant Cell Rep 2009, 28:373-386.
  • [26]De Block M, Debrouwer D: Two T-DNA’s co-transformed into Brassica napus by a double Agrobacterium tumefaciens infection are mainly integrated at the same locus. Theor Appl Genet 1991, 82:257-263.
  • [27]Komari T, Hiei Y, Saito Y, Murai N, Kumashiro T: Vectors carrying two separate T-DNAs for co-transformation of higher plants mediated by Agrobacterium tumefaciens and segregation of transformants free from selection markers. Plant J 1996, 10:165-174.
  • [28]Prakash NS, Bhojaraja R, Shivbachan SK, Priya GGH, Nagraj TK, Prasad V, Babu VS, Jayaprakash TL, Dasgupta S, Spencer TM, Boddupalli RS: Marker-free transgenic corn plant production through co-bombardment. Plant Cell Rep 2009, 28:1655-1668.
  • [29]Matthews PR, Wang MB, Waterhouse PM, Thornton S, Fieg SJ, Gubler F, Jacobsen JV: Marker gene elimination from transgenic barley, using co-transformation with adjacent ‘twin T-DNAs’ on a standard Agrobacterium transformation vector. Mol Breeding 2001, 7:195-202.
  • [30]Zhou HY, Chen SB, Li XG, Xiao GF, Wei XL, Zhu Z: Generating marker-free transgenic tobacco plants by Agrobacterium-mediated transformation with double T-DNA binary vector. Acta Botanica Sinica 2003, 45:1103-1108.
  • [31]Lu L, Wu X, Yin X, Morrand J, Chen X, Folk WR, Zhang ZJ: Development of marker-free transgenic sorghum [Sorghum bicolor (L.) Moench] using standard binary vectors with bar as a selectable marker. Plant Cell Tiss Organ Cult 2009, 99:97-108.
  • [32]Lu HJ, Zhou XR, Gong ZX, Upadhyaya NM: Generation of selectable marker-free transgenic rice using double right-border (DRB) binary vectors. Aust J Plant Physiol 2001, 28:241-248.
  • [33]Wang K, Genetello C, Van Montagu M, Zambryski P: Sequence context of the T-DNA border repeat elements determines its relative activity during T-DNA transfer to plant cells. Mol Gen Genet 1987, 210:338-346.
  • [34]De Buck S, De Wilde C, Van Montagu M, Depicker A: T-DNA vector backbone sequences are frequently integrated into the genome of transgenic plants obtained by Agrobacterium-mediated transformation. Mol Breeding 2000, 6:459-468.
  • [35]Rooke L, Steele SH, Barcelo P, Shewry PR, Lazzeri PA: Transgene inheritance, segregation and expression in bread wheat. Euphytica 2003, 129:301-309.
  • [36]Tu J, Datta K, Oliva N, Zhang G, Xu C, Khush GS, Zhang Q, Datta SK: Site-independently integrated transgenes in the elite restorer rice line Minghui 63 allow removal of a selectable marker from the gene of interest by self-segregation. Plant Biotech J 2003, 1:155-165.
  • [37]Wang D, Zhao Q, Zhu D, Ao G, Yu J: Particle-bombardment-mediated co-transformation of maize with a lysine rich protein gene (sb401) from potato. Euphytica 2006, 150:75-85.
  • [38]Zhao Y, Qian Q, Wang HZ, Huang DN: Co-transformation of gene expression cassettes via particle bombardment to generate safe transgenic plant without any unwanted DNA. In Vitro Cell Dev Biol- Plant 2007, 43:328-334.
  • [39]Matzke MA, Matzke AJM: How and why do plants inactivate homologous transgenes? Plant Physiol 1995, 107:679-685.
  • [40]Muskens MWM, Vissers APA, Mol JNM, Kooter JM: Role of inverted DNA repeats in transcriptional and post-transcriptional gene silencing. Plant Mol Biol 2000, 43:243-260.
  • [41]Wang MB, Waterhouse PM: High-efficiency silencing of a beta-glucuronidase gene in rice is correlated with repetitive transgene structure but is independent of DNA methylation. Plant Mol Biol 2000, 43:67-82.
  • [42]Park J, Lee YK, Kang BK, Chung WI: Co-transformation using a negative selectable marker gene for the production of selectable marker gene-free transgenic plants. Theor Appl Genet 2004, 109:1562-1567.
  • [43]Gleave AP, Mitra DS, Mudge SR, Morris BAM: Selectable marker-free transgenic plants without sexual crossing: transient expression of cre recombinase and use of a conditional lethal dominant gene. Plant Mol Biol 1999, 40:223-235.
  • [44]Rommens CM, Humara JM, Ye J, Yan H, Richael C, Zhang L, Perry R, Swords K: Crop improvement through modification of the plant’s own genome. Plant Physiol 2004, 135:421-431.
  • [45]Schaart JG, Krens FA, Pelgrom KTB, Mendes O, Rouwendal JA: Effective production of marker-free transgenic strawberry plants using inducible site-specific recombination and a bifunctional selectable marker gene. Plant Biotechnol J 2004, 2:233-240.
  • [46]Dutt M, Li LT, Dhekney SA, Gray DJ: A co-transformation system to produce transgenic grapevines free of marker genes. Plant Sci 2008, 175:423-430.
  • [47]Ramana Rao MV, Veluthambi K: Selectable marker elimination in the T0 generation by Agrobacterium-mediated co-transformation involving Mungbean yellow mosaic virus TrAP as a non-conditional negative selectable marker and bar for transient positive selection. Plant Cell Rep 2010, 29:473-483.
  • [48]Schlaman HRM, Hooykaas PJJ: Effectiveness of the bacterial gene codA encoding cytosine deaminase as a negative selectable marker in Agrobacterium-mediated plant transformation. Plant J 1997, 11:1377-1385.
  • [49]Hashimoto RY, Menck CFM, Van Sluys MA: Negative selection driven by cytosine deaminase gene in Lycopersicon esculentum hairy roots. Plant Sci 1999, 141:175-181.
  • [50]Koprek T, McElroy D, Louwerse J, Williams-Carrier R, Lemaux PG: Negative selection systems for transgenic barley (Hordeum vulgare L.): comparison of bacterial codA-and cytochrome P450-mediated selection. Plant J 1999, 19:719-726.
  • [51]Eklof S, Astot C, Sitbon F, Moritz T, Olsson O, Sandberg G: Transgenic tobacco plants co-expressing Agrobacterium iaa and ipt genes have wild-type hormone levels but display both auxin- and cytokinin-over producing phenotypes. Plant J 2000, 23:279-284.
  • [52]Tirichine L, Herrera-Cervera JA, Stougaard J: Chapter 5.4 Ds gene-tagging. In Lotus japonicus Handbook. Edited by Márquez AJ. Springer Press (Dordrecht); 2005.
  • [53]Chung WI, Lee WY, Jeong JH, Park J, Hong S: Development of negative selection system by using E. coli argE gene and synthetic N-acetylated phosphinothricin. Abstract #877, American Society of Plant Biologists meeting; 2003.
  • [54]Chen X, Yang W, Sivamani E, Bruneau AH, Wang B, Qu R: Selective elimination of perennial ryegrass by activation of a pro-herbicide through engineering E. coli argE gene. Mol Breeding 2005, 15:339-347.
  • [55]O’keefe DP, Tepperman JM, Dean C, Leto KJ, Erbes DL, Odell JT: Plant expression of a bacterial cytochrome P450 that catalyzes activation of a sulfonylurea pro-herbicide. Plant Physiol 1994, 105:473-482.
  • [56]Werck-Reichhart D, Hehn A, Didierjean L: Cytochrome P450 for engineering herbicide tolerance. Trends Plant Sci 2000, 5:116-123.
  • [57]Datta SK: Androgenic haploids: factors controlling development and its application in crop improvement. Current Sci 2005, 89:1870-1878.
  • [58]Kapusi E, Hensel G, Coronado MJ, Broeders S, Marthe C, Otto I, Kumlehn J: Elimination of selectable marker genes via segregation of uncoupled T-DNAs in populations of doubled haploid barley. J. Verbr. Lebensm. 2007, 2:115.
  • [59]Li Z, Fu YP, Liu WZ, Hu GC, Si HM, Tang KX, Sun ZX: Rapid generation of selectable marker-free transgenic rice with three target genes by co-transformation and anther culture. Rice Sci 2007, 14:239-246.
  • [60]Fedoroff NV: in Mobile DNA. Edited by Douglas EB, Martha MH. Washington, DC: Am. Soc. Microbiol; 1989:375-411.
  • [61]Cotsaftis O, Sallaud C, Breitler JC, Meynard D, Greco R, Pereira A, Guiderdoni E: Transposon-mediated generation of T-DNA- and marker-free rice plants expressing a Bt endotoxin gene. Mol Breeding 2002, 10:165-180.
  • [62]Ebinuma H, Sugita K, Matsunaga E, Yamakado M: Selection of marker-free transgenic plants using the isopentyl transferase gene. Proc Natl Acad Sci USA 1997, 94:2117-2121.
  • [63]Schetelig MF, Scolari F, Handler AM, Kittelmann S, Gasperi G: Site-specific recombination for the modification of transgenic strains of the Mediterranean fruit fly Ceratitis capitata. Proc Natl Acad Sci USA 2009, 106:18171-18176.
  • [64]Grindley NDF, Whiteson KL, Rice PA: Mechanisms of site-specific recombination. Annu Rev Biochem 2006, 75:567-605.
  • [65]Dale E, Ow DW: Intra- and intermolecular site-specific recombination in plant cells mediated by bacteriophage P1 recombinase. Gene 1990, 91:79-85.
  • [66]Dale E, Ow DW: Gene transfer with subsequent removal of the selection gene from the host genome. Proc Natl Acad Sci USA 1991, 88:10558-10562.
  • [67]Gidoni D, Srivastava V, Carmi N: Site-specific excisional recombination strategies for elimination of undesirable transgenes from crop plants. In Vitro Cell Dev Biol- Plant 2008, 44:457-467.
  • [68]Coppoolse ER, de Vroomen MJ, Roelofs D, Smit J, van Gennip F, Hersmus BJM, Nijkamp HJJ, van Haaren MJJ: Cre recombinase expression can result in phenotypic aberrations in plants. Plant Mol Biol 2003, 51:263-279.
  • [69]Kopertekh L, Jűttner G, Schiemann J: PVX-Cre-mediated marker gene elimination from transgenic plants. Plant Mol Biol 2004, 55:491-500.
  • [70]Jia H, Pang Y, Chen X, Fang R: Removal of the selectable marker gene from transgenic tobacco plants by expression of Cre recombinase from a tobacco mosaic virus vector through Agroinfection. Transgenic Res 2006, 15:375-384.
  • [71]Kopertekh L, Schiemann J: Agroinfiltration as a tool for transient expression of Cre recombinase in vivo. Transgenic Res 2005, 14:793-798.
  • [72]Srivastava V, Ow DW: Single-copy primary transformants of maize obtained through the co-introduction of a recombinase-expressing construct. Plant Mol Biol 2001, 46:561-566.
  • [73]Liu HK, Yang C, Wei ZM: Heat shock-regulated site-specific excision of extraneous DNA in transgenic plants. Plant Sci 2005, 168:997-1003.
  • [74]Hoff T, Schnorr KM, Mundy JA: Recombinase-mediated transcriptional induction system in transgenic plants. Plant Mol Biol 2001, 45:41-49.
  • [75]Zhang W, Subbarao S, Addae P, Shen A, Armstrong C, Peschke V, Gilbertson L: Cre/lox-mediated marker gene excision in transgenic maize (Zea mays L.) plants. Theor Appl Genet 2003, 107:1157-1168.
  • [76]Wang Y, Chen B, Hu Y, Li J, Lin Z: Inducible excision of selectable marker gene from transgenic plants by the Cre/lox site-specific recombination system. Transgenic Res 2005, 14:605-614.
  • [77]Cuellar W, Gaudin A, Solórzano D, Casas A, Nopo L, Chudalayandi P, Medrano G, Kreuze J, Ghislain M: Self-excision of the antibiotic resistance gene nptII using a heat inducible Cre-loxP system from transgenic potato. Plant Mol Biol 2006, 62:71-82.
  • [78]Fladung M, Becker D: Elimination of marker genes and targeted integration via FLP/FRT recombination system from yeast in hybrid aspen (Populus tremula L. x P. tremuloides Michx.). Tree Genet Genom 2010, 6:205-217.
  • [79]Zuo J, Niu QW, Møller SG, Chua NH: Chemical-regulated, site-specific DNA excision in transgenic plants. Nat Biotechnol 2001, 19:157-161.
  • [80]Zuo J, Niu QW, Møller SG, Chua NH: An estrogen receptor-based transactivator XVE mediates highly inducible gene expression in transgenic plants. Plant J 2000, 24:265-273.
  • [81]Matsunaga E, Sugita K, Ebinuma H: Asexual production of selectable marker-free transgenic woody plants, vegetatively propagated species. Mol Breeding 2002, 10:95-106.
  • [82]Sreekala C, Wu L, Gu K, Wang D, Tian D, Yin Z: Excision of a selectable marker in transgenic rice (Oryza sativa L.) using a chemically regulated Cre/loxP system. Plant Cell Rep 2005, 24:86-94.
  • [83]Zhang Y, Li H, Ouyang B, Lu Y, Ye Z: Chemical-induced autoexcision of selectable markers in elite tomato plants transformed with a gene conferring resistance to lepidopteran insects. Biotechnol Lett 2006, 28:1247-1253.
  • [84]Zhang Y, Liu H, Zhang JT, Li Y, Zhang H: Generation of selectable marker-free transgenic tomato resistant to drought, cold and oxidative stress using the Cre/loxP DNA excision system. Transgenic Res 2009, 18:607-619.
  • [85]Woo HJ, Cho HS, Lim SH, Shin KS, Lee SM, Lee KJ, Kim DH, Cho YG: Auto-excision of selectable marker genes from transgenic tobacco via a stress inducible FLP/FRT site-specific recombination system. Transgenic Res 2009, 18:455-465.
  • [86]Li Z, Xing A, Moon BP, Burgoyne SA, Guida AD, Liang H: A Cre/loxP-mediated self-activating gene excision system to produce marker gene free transgenic soybean plants. Plant Mol Biol 2007, 65:329-341.
  • [87]Joubès J, De Schutter K, Verkest A, Inzé D, De Veylder L: Conditional, recombinase-mediated expression of genes in plant cell cultures. Plant J 2004, 37:889-896.
  • [88]Kondrák M, van der Meer IM, Bánfalvi Z: Generation of marker- and backbone-free transgenic potatoes by site-specific recombination and a bi-functional marker gene in a non-regular one-border Agrobacterium transformation vector. Transgenic Res 2006, 15:729-737.
  • [89]Rio DC: Splicing of pre-mRNA: mechanism, regulation and role in development. Curr Opin Genet Dev 1993, 3:574-584.
  • [90]Mlynárová L, Conner AJ, Nap JP: Directed microspore-specific recombination of transgenic alleles to prevent pollen-mediated transmission of transgenes. Plant Biotechnol J 2006, 4:445-452.
  • [91]Luo K, Duan H, Zhao D, Zheng X, Deng W, Chen Y, Stewart CN Jr, McAvoy R, Jiang X, Wu Y, He A, Pei Y, Li Y: ‘GM-gene-deletor’: fused loxP-FRT recognition sequences dramatically improve the efficiency of FLP or CRE recombinase on transgene excision from pollen and seed to tobacco plants. Plant Biotechnol J 2007, 5:263-274.
  • [92]Verweire D, Verleyen K, De Buck S, Claeys M, Angenon G: Marker-free transgenic plants through genetically programmed auto-excision. Plant Physiol 2007, 145:1220-1231.
  • [93]Frédéric VE, Verweire D, Claeys M, Depicker A, Angenon G: Evaluation of seven promoters to achieve germline directed Cre-lox recombination in Arabidopsis thaliana. Plant Cell Rep 2009, 28:1509-1520.
  • [94]Moon HS, Li Y, Stewart CN Jr: Keeping the genie in the bottle: transgene biocontainment by excision in pollen. Trends Biotechnol 2010, 28:3-8.
  • [95]Day A, Goldschmidt-Clermont M: The chloroplast transformation toolbox: selectable markers and marker removal. Plant Biotechnol J 2011, 9:540-553.
  • [96]Corneille S, Lutz KA, Azhagiri AK, Maliga P: Identification of functional lox sites in the plastid genome. Plant J 2003, 35:753-762.
  • [97]Lutz K, Corneille S, Azhagiri AK, Svab Z, Maliga P: A novel approach to plastid transformation utilizes the phiC31 phage integrase. Plant J 2004, 37:906-913.
  • [98]Lutz KA, Bosacchi MH, Maliga P: Plastid marker gene excision by transiently expressed CRE recombinase. Plant J 2006, 45:447-456.
  • [99]Lutz KA, Svab Z, Maliga P: Construction of marker-free transplastomic tobacco using the Cre-loxP site-specific recombination system. Nat Protoc 2006, 1:900-910.
  • [100]Chevalier BS, Stoddard BL: Homing endonucleases: structural and functional insight into the catalysts of intron/intein mobility. Nucleic Acids Res 2001, 29:3757-3774.
  • [101]Gogarten JP, Senejani AG, Zhaxybayeva O, Olendzenski L, Hilario E: Inteins: structure, function, and evolution. Annu Rev Microbiol 2002, 56:263-287.
  • [102]Thierry A, Dujon B: Nested chromosomal fragmentation in yeast using the meganuclease I-SceI: a new method for physical mapping of eukaryotic genomes. Nucleic Acids Res 1992, 20:5625-5631.
  • [103]Jasin M: Genetic manipulation of genomes with rare-cutter endonucleases. Trends Genet 1996, 12:224-228.
  • [104]Jacquier A, Dujon B: An intron-encoded protein is active in a gene conversion process that spreads an intron into a mitochondrial gene. Cell 1985, 41:383-394.
  • [105]Siegl T, Petzke L, Welle E, Luzhetskyy A: I-SceI endonuclease: a new tool for DNA repair studies and genetic manipulations in streptomycetes. Appl Microbiol Biotechnol 2010, 87:1525-1532.
  • [106]Puchta H, Dujon B, Hohn B: Homologous recombination in plant cells is enhanced by in vitro induction of double strand breaks into DNA by site-specific endonuclease. Nucleic Acids Res 1993, 21:5034-5040.
  • [107]Donoho G, Jasin M, Berg P: Analysis of gene targeting and intrachromosomal homologous recombination stimulated by genomic double-strand breaks in mouse embryonic stem cells. Mol Cell Biol 1998, 18:4070-4078.
  • [108]Siebert H, Puchta H: Efficient repair of genomic double-strand breaks by homologous recombination between directly repeat sequences in plant genome. Plant Cell 2002, 14:1121-1131.
  • [109]West CE, Waterworth WM, Sunderland PA, Bray CM: Arabidopsis DNA double-strand break repair pathways. Biochem Soc Trans 2004, 32:964-966.
  • [110]Swoboda P, Gal S, Hohn B, Puchta H: Intrachromosomal homologous recombination in whole plants. EMBO J 1994, 13:484-489.
  • [111]Bertrand P, Rouilard D, Boulet A, Levalois C, Soussi T, Lopez BS: Increase of spontaneous intrachromosomal homologous recombination in mammalian cells expressing a mutant p53 protein. Oncogene 1997, 14:1117-1122.
  • [112]Puchta H, Hohn B: From centiMorgans to basepairs: homologous recombination in plants. Trends Plant Sci 1996, 1:340-348.
  • [113]Zubko E, Scutt C, Meyer P: Intrachromosomal recombination between attP regions as a tool to remove selectable marker genes from tobacco transgenes. Nat Biotechnol 2000, 18:442-445.
  • [114]Puchta H: Removing selectable marker genes: taking the shortcut. Trends Plant Sci 2000, 5:273-274.
  • [115]Porteus MH, Carroll D: Gene targeting using zinc finger nucleases. Nat Biotechnol 2005, 23:967-973.
  • [116]Salomon S, Puchta H: Capture of genomic and T-DNA sequences during double-strand break repair in somatic plant cells. EMBO J 1998, 17:6086-6095.
  • [117]Chilton MM, Que Q: Targeted integration of T-DNA into the tobacco genome at double-stranded breaks: new insights on the mechanism of T-DNA integration. Plant Physiol 2003, 133:956-965.
  • [118]Kim YG, Cha J, Chandrasegaran S: Hybrid restriction enzymes: zinc finger fusions to Fok I cleavage domain. Proc Natl Acad Sci USA 1996, 93:1156-1160.
  • [119]Liu PQ, Chan EM, Cost GJ, Zhang L, Miller JC, Guschin DY, Reik A, Holmes MC, Mott JE, Mott TN, Gregory PD: Generation of a triple-gene knockout mammalian cell line using engineered zinc-finger nucleases. Biotehnol Bioeng 2010, 106:97-105.
  • [120]Lee HJ, Kim E, Kim JS: Site-specific DNA excision via engineered zinc finger nucleases. Trends Biotechnol 2010, 28:445-446.
  • [121]Weinthal D, Tovkach A, Zeevi V, Tzfira T: Genome editing in plant cells by zinc finger nucleases. Trends Plant Sci 2010, 15:308-321.
  • [122]Cai CQ, Doyon Y, Ainley WM, Miller JC, Dekelver RC, Moehle EA, Rock JM, Lee YL, Garrison R, Schulenberg L: Targeted transgene integration in plant cells using designed zinc finger nucleases. Plant Mol Biol 2009, 69:699-709.
  • [123]Shukla VK, Doyon Y, Miller JC, Dekelver RC, Moehle EA, Worden SE, Mitchell JC, Arnold NL, Gopalan S, Meng X: Precise genome modification in the crop species Zea mays using zinc-finger nucleases. Nature 2009, 459:437-441.
  • [124]Townsend JA, Wright DA, Winfrey RJ, Fu F, Maeder ML, Joung JK, Voytas DF: High-frequency modification of plant genes using engineered zinc-finger nucleases. Nature 2009, 459:442-445.
  • [125]Osakabe K, Osakabe Y, Toki S: Site-directed mutagenesis in Arabidopsis using custom-designed zinc finger nucleases. Natl Acad Sci USA 2010, 107:12034-12039.
  • [126]Zhang F, Maeder ML, Unger-Wallace E, Hoshaw JP, Reyon D, Christian M, Li X, Pierick CJ, Dobbs D, Peterson T, Joung JK, Voytase DF: High frequency targeted mutagenesis in Arabidopsis thaliana using zinc finger nucleases. Proc Natl Acad Sci USA 2010, 107:12028-12033.
  • [127]Petolino JF, Worden A, Curlee K, Connell J, Moynahan TLS, Larsen C, Russell S: Zinc finger nuclease-mediated transgene deletion. Plant Mol Biol 2010, 73:617-628.
  • [128]Nain V, Jaiswal R, Dalal M, Ramesh B, Kumar PA: Polymerase chain reaction analysis of transgenic plants contaminated by Agrobacterium. Plant Mol Biol Rep 2005, 23:59-65.
  • [129]Hooykaas PJJ, Schilperoort RA: Agrobacterium and plant genetic engineering. Plant Mol Biol 1992, 19:15-38.
  • [130]Miura A, Yonebayashi S, Watanabe K, Toyama T, Shimada H, Kakutani T: Mobilization of transposons by a mutation abolishing full DNA methylation in Arabidopsis. Nature 2001, 411:212-214.
  • [131]Lee HJ, Kim E, Kim JS: Targeted chromosomal deletions in human cells using zinc finger nucleases. Genome Res 2010, 20:81-89.
  • [132]USDA/APHIS Environmental Assessment: In response to Monsanto Petition 04-229-01P Seeking a Determination of Nonregulated Status for Lysine Maize line LY038. http://www.asphis.usda.gov webcite
  • [133]Buchholz F: Engineering DNA processing enzymes for the postgenomic era. Curr Opin Biotechnol 2009, 20:383-389.
  • [134]Naiche LA, Papaioannou VE: Cre activity causes widespread apoptosis and lethal anemia during embryonic development. Genesis 2007, 45:768-775.
  • [135]Liu J, Skjorringe T, Gjetting T, Jensen TG: PhiC31 integrase induces a DNA damage response and chromosomal rearrangements in human adult fibroblasts. BMC Biotechnol 2009, 9:31. BioMed Central Full Text
  • [136]Srivastava V, Ow DW: Rare instances of Cre-mediated deletion product maintained in transgenic wheat. Plant Mol Biol 2002, 52:661-668.
  • [137]Kittiwongwattana C, Lutz K, Clark M, Maliga P: Plastid marker gene excision by the phiC31 phage site-specific recombinase. Plant Mol Biol 2007, 64:137-143.
  • [138]Bendich AJ: Why do chloroplasts and mitochondria contain so many copies of their genome? Bioassays 1987, 6:279-282.
  • [139]Sauer B: Identification of cryptic lox sites in the yeast genome by selection for Cre-mediated chromosome translocations that confer multiple-drug resistance. J Mol Biol 1992, 223:911-928.
  • [140]Thyagarajan B, Guimarães MJ, Groth AC, Calos MP: Mammalian genomes contain active recombinase recognition sites. Gene 2000, 244:47-54.
  • [141]Olivares EC, Hollis RP, Chalberg TW, Meuse L, Kay MA, Calos MP: Site-specific genomic integration produces therapeutic Factor IX levels in mice. Nat Biotechnol 2002, 20:1124-1128.
  • [142]Keravala A, Groth AC, Jarrahian S, Thyagarajan B, Hoyt JJ, Kirby PJ, Calos MP: A diversity of serine phage integrases mediate site-specific recombination in mammalian cells. Mol Gen Gent 2006, 276:135-146.
  • [143]Thomson JG, Chan R, Thilmony R, Yau YY, Ow DW: PhiC31 recombination system demonstrates heritable germinal transmission of site-specific excision from the Arabidopsis genome. BMC Biotechnol 2010, 10:17. BioMed Central Full Text
  • [144]Qin M, Bayley C, Stockton T, Ow DW: Cre recombinase-mediated site-specific recombination between plant chromosomes. Proc Natl Acad Sci USA 1994, 91:1706-1710.
  • [145]Koshinsky HA, Lee E, Ow DW: Cre-lox site-specific recombination between Arabidopsis and tobacco chromosomes. Plant J 2000, 23:715-722.
  • [146]Medberry SL, Dale E, Qin M, Ow DW: Intra-chromosomal rearrangements generated by Cre-lox site specific recombination. Nucleic Acids Res 1995, 23:485-490.
  • [147]Schmidt EE, Taylor DS, Prigge JR, Barnett S, Capecchi MR: Illegitimate Cre-dependent chromosome rearrangements in transgenic mouse spermatides. Proc Natl Acad Sci USA 2000, 97:13702-13707.
  • [148]Varshney RK, Nayak SN, May GD, Jackson SA: Next-generation sequencing technologies and their implications for crop genetics and breeding. Trends Biotechnol 2009, 27:522-530.
  • [149]Moon HS, Abercrombie LL, Eda S, Blanvillain R, Thomson JG, Ow DW, Stewart CN Jr: Transgene excision in pollen using a codon optimized serine resolvase CinH-RS2 site-specific recombination system. Plant Mol Biol 2011, 75:621-631.
  • [150]Srivastava V, Ow DW: Marker-free site-specific gene integration in plants. Trends Biotechnol 2004, 22:627-629.
  • [151]Akbudak MA, Srivastava V: Improved FLP recombinase, FLPe, efficiently removes marker gene from transgene locus developed by Cre-lox mediated site-specific gene integration in rice. Mol Biotechnol 2011, 9:82-89.
  • [152]Thomson JG, Yau YY, Blanvillain R, Nunes WM, Chiniquy D, Thilmony R, Ow DW: ParA resolvase catalyzes site-specific excision of DNA from the Arabidopsis genome. Transgenic Res 2009, 18:237-248.
  • [153]Zhou Y, Yau YY, Ow DW, Wang Y: Site-specific deletions in the tomato genome by the CinH-RS2 and ParA-MRS recombination systems. Plant Biotechnol Rep 2012, 6:225-232.
  • [154]Thomson JG, Chan R, Smith J, Thilmony R, Yau YY, Wang Y, Ow DO: The Bxb1 recombination system demonstrates heritable transmission of site-specific excision in Arabidopsis. BMC Biotechnol 2012, 12:9. BioMed Central Full Text
  • [155]Blechl A, Lin J, Shao M, Thilmony R, Thomson J: The Bxb1 recombinase mediates site-specific deletion in transgenic wheat. Plant Mol Biol Rep 2012.
  • [156]Yamaguchi S, Kazuki Y, Nakayama Y, Nanba E, Oshimura M, Ohbayashi T: A method for producing transgenic cells using a multi-integrase system on a human artificial chromosome vector. PLoS One 2011, 6:e17267.
  • [157]Le Y, Gagneten S, Tombaccini D, Bethke B, Sauer B: Nuclear targeting determinants of the phage P1 Cre DNA recombinase. Nucleic Acids Res 1999, 27:4703-4709.
  • [158]Will E, Klump H, Heffner N, Schwieger M, Schiedlmeier B, Ostertag W, Baum C, Stocking C: Unmodified Cre recombinase crosses the membrane. Nucleic Acids Res 2002, 30:e59.
  • [159]Andreas S, Schwenk F, Kűter-Luks B, Faust N, Kűhn R: Enhanced efficiency through nuclear localization signal fusion on phage ϕC31-integrase: activity comparison with Cre and FLPe recombinase in mammalian cells. Nucleic Acids Res 2002, 30:2299-2306.
  • [160]Brown WRA, Lee NCO, Xu Z, Smith MCM: Serine recombinases as tools for genome engineering. Methods 2011, 53:372-379.
  • [161]Raymond CS, Soriano P: High-efficiency FLP and ϕC31 site-specific recombination in mammalian cells. PLoS One 2007, 2:e162.
  • [162]Shao M, Thomson J: A rapid and quantitative recombinase activity assay. Abstract (P120), Plant and Animal Genome XIX conference. San Diego; 2011. http://www.intl-pag.org webcite
  • [163]Day CD, Lee E, Kobayashi J, Holappa LD, Albert HA, Ow DW: Transgene integration into the same chromosome location can produce alleles that express at a predictable level, or alleles that are differentially silenced. Genes Dev 2000, 14:2869-2880.
  • [164]Wimmer EA: Insect transgenesis by site-specific recombination. Nat Methods 2005, 2:580-582.
  • [165]Hockemeye D, Soldner F, Beard C, Gao Q, Mitalipova M, Dekelver RC, Katibah GE, Amora R, Boydston EA, Zeitler B: Efficient targeting of expressed and silent genes in human ESCs and iPSCs using zinc-finger nucleases. Nat Biotechnol 2009, 27:851-857.
  • [166]Zou J, Maeder M, Mali P, Pruett-Miller SM, Thibodeau-Beganny S, Chou BK: Gene targeting of a disease-related gene in human induced pluripotent stem and embryonic stem cells. Cell Stem Cell 2009, 5:97-110.
  • [167]Yau YY, Wang YJ, Thomson JG, Ow DW: Method for Bxb1-mediated site-specific integration in planta. (Ed.) James A. Birchler. In Plant Chromosome Engineering: Method in Molecular Biology, Vol. 701. Clifton, New Jersey: Humana Press; 2011:147-166.
  • [168]Büttner D, Bonas U: Regulation and secretion of Xanthomonas virulence factors. FEMS Microbiol Rev 2010, 34:107-133.
  • [169]Kay S, Hahn S, Marois E, Hause G, Bonas U: A bacterial effector acts as a plant transcription factor and induces a cell size regulator. Science 2007, 318:648-651.
  • [170]Li T, Huang S, Jiang WZ, Wright D, Spalding MH, Weeks DP, Yang B: TAL nucleases (TALNs) hybrid proteins composed of TAL effectors and FokI DNA-cleavage doman. Nucleic Acids Res 2011, 39:359-372.
  • [171]Scholze H, Boch J: TAL effectors are remote controls for gene activation. Curr Opin Microbiol 2011, 14:47-53.
  • [172]Cade L, Reyon D, Hwang WY, Tsai SQ, Patel S, Khayter C, Joung JK, Sander JD, Peterson RT, Yeh JR: Highly efficient generation of heritable zebrafish gene mutations using homo- and heterodimeric TALENs. Nucleic Acids Res 2012, 40:8001-8010.
  • [173]Tesson L, Usal C, Menoret S, Leung E, Niles BJ, Remy S: Knockout rats generated by embryo microinjection of TALENs. Nat Biotechnol 2011, 29:695-696.
  • [174]Cermak T, Doyle EL, Christian M, Wang L, Zhang Y, Schmidt C, Baller JA: Efficient design and assembly of custom TALEN and other TAL effector-based constructs for DNA targeting. Nucleic Acids Res 2011, 39:e82.
  • [175]Li T, Liu B, Spalding MH, Weeks DP, Yang B: High-efficiency TALEN-based gene editing produces disease-resistant rice. Nat Biotechnol 2012, 30:390-392.
  • [176]Mentewab A, Stewart CN Jr: Overexpression of an Arabidopsis thaliana ABC transporter confers kanamycin resistance to transgenic plants. Nat Biotechnol 2005, 23:1177-1189.
  • [177]Burris KA, Mentewab A, Ripp S, Stewart CN Jr: An Arabidopsis thaliana ABC transporter that confers kanamycin resistance in transgenic plants does not endow resistance to Escherichia coli. Microbial Biotechnol 2008, 1:191-195.
  文献评价指标  
  下载次数:52次 浏览次数:33次