期刊论文详细信息
BMC Developmental Biology
Targeted germ line disruptions reveal general and species-specific roles for paralog group 1 hox genes in zebrafish
Charles G Sagerström1  Scot A Wolfe2  Denise A Zannino1  Ankit Gupta2  Steven E Weicksel1 
[1] Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, 364 Plantation St./LRB815, Worcester, MA 01605-2324, USA;Program in Gene Function and Expression, University of Massachusetts Medical School, Worcester, MA 01605, USA
关键词: Gene expression;    Nucleosome positioning;    Hindbrain;    Retinoic acid signaling;    TALEN nuclease;    Zinc finger nuclease;   
Others  :  820546
DOI  :  10.1186/1471-213X-14-25
 received in 2014-03-10, accepted in 2014-05-27,  发布年份 2014
PDF
【 摘 要 】

Background

The developing vertebrate hindbrain is transiently segmented into rhombomeres by a process requiring Hox activity. Hox genes control specification of rhombomere fates, as well as the stereotypic differentiation of rhombomere-specific neuronal populations. Accordingly, germ line disruption of the paralog group 1 (PG1) Hox genes Hoxa1 and Hoxb1 causes defects in hindbrain segmentation and neuron formation in mice. However, antisense-mediated interference with zebrafish hoxb1a and hoxb1b (analogous to murine Hoxb1 and Hoxa1, respectively) produces phenotypes that are qualitatively and quantitatively distinct from those observed in the mouse. This suggests that PG1 Hox genes may have species-specific functions, or that anti-sense mediated interference may not completely inactivate Hox function in zebrafish.

Results

Using zinc finger and TALEN technologies, we disrupted hoxb1a and hoxb1b in the zebrafish germ line to establish mutant lines for each gene. We find that zebrafish hoxb1a germ line mutants have a more severe phenotype than reported for Hoxb1a antisense treatment. This phenotype is similar to that observed in Hoxb1 knock out mice, suggesting that Hoxb1/hoxb1a have the same function in both species. Zebrafish hoxb1b germ line mutants also have a more severe phenotype than reported for hoxb1b antisense treatment (e.g. in the effect on Mauthner neuron differentiation), but this phenotype differs from that observed in Hoxa1 knock out mice (e.g. in the specification of rhombomere 5 (r5) and r6), suggesting that Hoxa1/hoxb1b have species-specific activities. We also demonstrate that Hoxb1b regulates nucleosome organization at the hoxb1a promoter and that retinoic acid acts independently of hoxb1b to activate hoxb1a expression.

Conclusions

We generated several novel germ line mutants for zebrafish hoxb1a and hoxb1b. Our analyses indicate that Hoxb1 and hoxb1a have comparable functions in zebrafish and mouse, suggesting a conserved function for these genes. In contrast, while Hoxa1 and hoxb1b share functions in the formation of r3 and r4, they differ with regards to r5 and r6, where Hoxa1 appears to control formation of r5, but not r6, in the mouse, whereas hoxb1b regulates formation of r6, but not r5, in zebrafish. Lastly, our data reveal independent regulation of hoxb1a expression by retinoic acid and Hoxb1b in zebrafish.

【 授权许可】

   
2014 Weicksel et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20140712045632156.pdf 2597KB PDF download
Figure 5. 169KB Image download
Figure 4. 213KB Image download
Figure 3. 122KB Image download
Figure 2. 271KB Image download
Figure 1. 159KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

【 参考文献 】
  • [1]McGinnis W, Krumlauf R: Homeobox genes and axial patterning. Cell 1992, 68(2):283-302.
  • [2]Burglin TR, Ruvkun G: The Caenorhabditis elegans homeobox gene cluster. Curr Opin Genet Dev 1993, 3(4):615-620.
  • [3]Lewis EB: A gene complex controlling segmentation in Drosophila. Nature 1978, 276(5688):565-570.
  • [4]Amores A, Force A, Yan YL, Joly L, Amemiya C, Fritz A, Ho RK, Langeland J, Prince V, Wang YL, Westerfield M, Ekker M, Postlethwait JH: Zebrafish hox clusters and vertebrate genome evolution. Science 1998, 282(5394):1711-1714.
  • [5]Duboule D, Dolle P: The structural and functional organization of the murine HOX gene family resembles that of Drosophila homeotic genes. EMBO J 1989, 8(5):1497-1505.
  • [6]Kmita M, Duboule D: Organizing axes in time and space; 25 years of colinear tinkering. Science 2003, 301(5631):331-333.
  • [7]Simeone A, Acampora D, Arcioni L, Andrews PW, Boncinelli E, Mavilio F: Sequential activation of HOX2 homeobox genes by retinoic acid in human embryonal carcinoma cells. Nature 1990, 346(6286):763-766.
  • [8]Dupe V, Lumsden A: Hindbrain patterning involves graded responses to retinoic acid signalling. Development 2001, 128(12):2199-2208.
  • [9]Apfel CM, Kamber M, Klaus M, Mohr P, Keidel S, LeMotte PK: Enhancement of HL-60 differentiation by a new class of retinoids with selective activity on retinoid X receptor. J Biol Chem 1995, 270(51):30765-30772.
  • [10]Perissi V, Staszewski LM, McInerney EM, Kurokawa R, Krones A, Rose DW, Lambert MH, Milburn MV, Glass CK, Rosenfeld MG: Molecular determinants of nuclear receptor-corepressor interaction. Genes Dev 1999, 13(24):3198-3208.
  • [11]Roy B, Taneja R, Chambon P: Synergistic activation of retinoic acid (RA)-responsive genes and induction of embryonal carcinoma cell differentiation by an RA receptor alpha (RAR alpha)-, RAR beta-, or RAR gamma-selective ligand in combination with a retinoid X receptor-specific ligand. Mol Cell Biol 1995, 15(12):6481-6487.
  • [12]Chambeyron S, Da Silva NR, Lawson KA, Bickmore WA: Nuclear re-organisation of the Hoxb complex during mouse embryonic development. Development 2005, 132(9):2215-2223.
  • [13]Chambeyron S, Bickmore WA: Chromatin decondensation and nuclear reorganization of the HoxB locus upon induction of transcription. Genes Dev 2004, 18(10):1119-1130.
  • [14]Morey C, Da Silva NR, Perry P, Bickmore WA: Nuclear reorganisation and chromatin decondensation are conserved, but distinct, mechanisms linked to Hox gene activation. Development 2007, 134(5):909-919.
  • [15]Krumlauf R: Hox genes in vertebrate development. Cell 1994, 78:191-201.
  • [16]Tumpel S, Wiedemann LM, Krumlauf R: Hox genes and segmentation of the vertebrate hindbrain. Curr Top Dev Biol 2009, 88:103-137.
  • [17]Moens CB, Cordes SP, Giorgianni MW, Barsh GS, Kimmel CB: Equivalence in the genetic control of hindbrain segmentation in fish and mouse. Development 1998, 125(3):381-391.
  • [18]Murphy P, Hill RE: Expression of the mouse labial-like homeobox-containing genes, Hox 2.9 and Hox 1.6, during segmentation of the hindbrain. Development 1991, 111(1):61-74.
  • [19]Murphy P, Davidson DR, Hill RE: Segment-specific expression of a homoeobox-containing gene in the mouse hindbrain. Nature 1989, 341(6238):156-159.
  • [20]Lufkin T, Dierich A, LeMeur M, Mark M, Chambon P: Disruption of the Hox-1.6 homeobox gene results in defects in a region corresponding to its rostral domain of expression. Cell 1991, 66(6):1105-1119.
  • [21]Carpenter EM, Goddard JM, Chisaka O, Manley NR, Capecchi MR: Loss of Hox-A1 (Hox-1.6) function results in the reorganization of the murine hindbrain. Development 1993, 118(4):1063-1075.
  • [22]Chisaka O, Musci TS, Capecchi MR: Developmental defects of the ear, cranial nerves and hindbrain resulting from targeted disruption of the mouse homeobox gene Hox-1.6. Nature 1992, 355(6360):516-520.
  • [23]Rossel M, Capecchi MR: Mice mutant for both Hoxa1 and Hoxb1 show extensive remodeling of the hindbrain and defects in craniofacial development. Development 1999, 126(22):5027-5040.
  • [24]Mark M, Lufkin T, Vonesch JL, Ruberte E, Olivo JC, Dolle P, Gorry P, Lumsden A, Chambon P: Two rhombomeres are altered in Hoxa-1 mutant mice. Development 1993, 119(2):319-338.
  • [25]Dupe V, Davenne M, Brocard J, Dolle P, Mark M, Dierich A, Chambon P, Rijli FM: In vivo functional analysis of the Hoxa-1 3' retinoic acid response element (3'RARE). Development 1997, 124(2):399-410.
  • [26]Studer M, Lumsden A, Ariza-McNaughton L, Bradley A, Krumlauf R: Altered segmental identity and abnormal migration of motor neurons in mice lacking Hoxb-1. Nature 1996, 384(6610):630-634.
  • [27]Goddard JM, Rossel M, Manley NR, Capecchi MR: Mice with targeted disruption of Hoxb-1 fail to form the motor nucleus of the VIIth nerve. Development 1996, 122(10):3217-3228.
  • [28]Gavalas A, Studer M, Lumsden A, Rijli FM, Krumlauf R, Chambon P: Hoxa1 and Hoxb1 synergize in patterning the hindbrain, cranial nerves and second pharyngeal arch. Development 1998, 125(6):1123-1136.
  • [29]McClintock JM, Kheirbek MA, Prince VE: Knockdown of duplicated zebrafish hoxb1 genes reveals distinct roles in hindbrain patterning and a novel mechanism of duplicate gene retention. Development 2002, 129(10):2339-2354.
  • [30]Meng X, Noyes MB, Zhu LJ, Lawson ND, Wolfe SA: Targeted gene inactivation in zebrafish using engineered zinc-finger nucleases. Nat Biotechnol 2008, 26(6):695-701.
  • [31]Cermak T, Doyle EL, Christian M, Wang L, Zhang Y, Schmidt C, Baller JA, Somia NV, Bogdanove AJ, Voytas DF: Efficient design and assembly of custom TALEN and other TAL effector-based constructs for DNA targeting. Nucleic Acids Res 2011, 39(12):e82.
  • [32]Szczepek M, Brondani V, Buchel J, Serrano L, Segal DJ, Cathomen T: Structure-based redesign of the dimerization interface reduces the toxicity of zinc-finger nucleases. Nat Biotechnol 2007, 25(7):786-793.
  • [33]Miller JC, Holmes MC, Wang J, Guschin DY, Lee YL, Rupniewski I, Beausejour CM, Waite AJ, Wang NS, Kim KA, Amores A, Force A, Yan YL, Joly L, Amemiya C, Fritz A, Ho RK, Langeland J, Prince V, Wang YL, Westerfield M, Ekker M, Postlethwait JH: An improved zinc-finger nuclease architecture for highly specific genome editing. Nat Biotechnol 2007, 25(7):778-785.
  • [34]Handel EM, Alwin S, Cathomen T: Expanding or restricting the target site repertoire of zinc-finger nucleases: the inter-domain linker as a major determinant of target site selectivity. Mol Ther 2009, 17(1):104-111.
  • [35]Zhu C, Smith T, McNulty J, Rayla AL, Lakshmanan A, Siekmann AF, Buffardi M, Meng X, Shin J, Padmanabhan A, Zhu C, Smith T, McNulty J, Rayla AL, Lakshmanan A, Siekmann AF, Buffardi M, Meng X, Shin J, Padmanabhan A, Cifuentes D, Giraldez AJ, Look AT, Epstein JA, Lawson ND, Wolfe SA: Evaluation and application of modularly assembled zinc-finger nucleases in zebrafish. Development 2011, 138(20):4555-4564.
  • [36]Gupta A, Meng X, Zhu LJ, Lawson ND, Wolfe SA: Zinc finger protein-dependent and -independent contributions to the in vivo off-target activity of zinc finger nucleases. Nucleic Acids Res 2011, 39(1):381-392.
  • [37]Fine EJ, Cradick TJ, Zhao CL, Lin Y, Bao G: An online bioinformatics tool predicts zinc finger and TALE nuclease off-target cleavage. Nucleic Acids Res 2014, 42(6):e42.
  • [38]McClintock JM, Carlson R, Mann DM, Prince VE: Consequences of Hox gene duplication in the vertebrates: an investigation of the zebrafish Hox paralogue group 1 genes. Development 2001, 128(13):2471-2484.
  • [39]Begemann G, Schilling TF, Rauch GJ, Geisler R, Ingham PW: The zebrafish neckless mutation reveals a requirement for raldh2 in mesodermal signals that pattern the hindbrain. Development 2001, 128(16):3081-3094.
  • [40]Dupe V, Ghyselinck NB, Wendling O, Chambon P, Mark M: Key roles of retinoic acid receptors alpha and beta in the patterning of the caudal hindbrain, pharyngeal arches and otocyst in the mouse. Development 1999, 126(22):5051-5059.
  • [41]Niederreither K, Vermot J, Schuhbaur B, Chambon P, Dolle P: Retinoic acid synthesis and hindbrain patterning in the mouse embryo. Development 2000, 127(1):75-85.
  • [42]Serpente P, Tumpel S, Ghyselinck NB, Niederreither K, Wiedemann LM, Dolle P, Chambon P, Krumlauf R, Gould AP: Direct crossregulation between retinoic acid receptor {beta} and Hox genes during hindbrain segmentation. Development 2005, 132(3):503-513.
  • [43]Studer M, Gavalas A, Marshall H, Ariza-McNaughton L, Rijli FM, Chambon P, Krumlauf R: Genetic interactions between Hoxa1 and Hoxb1 reveal new roles in regulation of early hindbrain patterning. Development 1998, 125(6):1025-1036.
  • [44]Kudoh T, Wilson SW, Dawid IB: Distinct roles for Fgf, Wnt and retinoic acid in posteriorizing the neural ectoderm. Development 2002, 129(18):4335-4346.
  • [45]Roy NM, Sagerstrom CG: An early Fgf signal required for gene expression in the zebrafish hindbrain primordium. Brain Res Dev Brain Res 2004, 148(1):27-42.
  • [46]Weicksel SE, Xu J, Sagerstrom CG: Dynamic nucleosome organization at hox promoters during zebrafish embryogenesis. PLoS One 2013, 8(5):e63175.
  • [47]Sekinger EA, Moqtaderi Z, Struhl K: Intrinsic histone-DNA interactions and low nucleosome density are important for preferential accessibility of promoter regions in yeast. Mol Cell 2005, 18(6):735-748.
  • [48]Choe SK, Ladam F, Sagerstrom C: TALE factors poise promoters for activation by Hox proteins. Dev Cell 2014, 28(2):203-211.
  • [49]Zigman M, Laumann-Lipp N, Titus T, Postlethwait J, Moens CB: Hoxb1b controls oriented cell division, cell shape and microtubule dynamics in neural tube morphogenesis. Development 2014, 141(3):639-649.
  • [50]Vlachakis N, Choe SK, Sagerstrom CG: Meis3 synergizes with Pbx4 and Hoxb1b in promoting hindbrain fates in the zebrafish. Development 2001, 128(8):1299-1312.
  • [51]Waskiewicz AJ, Rikhof HA, Hernandez RE, Moens CB: Zebrafish Meis functions to stabilize Pbx proteins and regulate hindbrain patterning. Development 2001, 128(21):4139-4151.
  • [52]Waskiewicz AJ, Rikhof HA, Moens CB: Eliminating zebrafish pbx proteins reveals a hindbrain ground state. Dev Cell 2002, 3(5):723-733.
  • [53]Popperl H, Rikhof H, Chang H, Haffter P, Kimmel CB, Moens CB: Lazarus is a novel pbx gene that globally mediates hox gene function in zebrafish. Mol Cell 2000, 6(2):255-267.
  • [54]Choe SK, Lu P, Nakamura M, Lee J, Sagerstrom CG: Meis cofactors control HDAC and CBP accessibility at Hox-regulated promoters during zebrafish embryogenesis. Dev Cell 2009, 17(4):561-567.
  • [55]Popperl H, Bienz M, Studer M, Chan SK, Aparicio S, Brenner S, Mann RS, Krumlauf R: Segmental expression of Hoxb-1 is controlled by a highly conserved autoregulatory loop dependent upon exd/pbx. Cell 1995, 81(7):1031-1042.
  • [56]Jacobs Y, Schnabel CA, Cleary ML: Trimeric association of Hox and TALE homeodomain proteins mediates Hoxb2 hindbrain enhancer activity. Mol Cell Biol 1999, 19(7):5134-5142.
  • [57]Marshall H, Studer M, Popperl H, Aparicio S, Kuroiwa A, Brenner S, Krumlauf R: A conserved retinoic acid response element required for early expression of the homeobox gene Hoxb-1. Nature 1994, 370(6490):567-571.
  • [58]Ishioka A, Jindo T, Kawanabe T, Hatta K, Parvin MS, Nikaido M, Kuroyanagi Y, Takeda H, Yamasu K: Retinoic acid-dependent establishment of positional information in the hindbrain was conserved during vertebrate evolution. Dev Biol 2011, 350(1):154-168.
  • [59]Kimmel CB, Ballard WW, Kimmel SR, Ullmann B, Schilling TF: Stages of embryonic development of the zebrafish. Dev Dyn 1995, 203(3):253-310.
  • [60]Kok FO, Gupta A, Lawson ND, Wolfe SA: Construction and application of site-specific artificial nucleases for targeted gene editing. Methods Mol Biol 2014, 1101:267-303.
  • [61]Westerfield M: The Zebrafish Book. Eugene, OR: University of Oregon Press; 1993.
  • [62]Vlachakis N, Ellstrom DR, Sagerstrom CG: A novel pbx family member expressed during early zebrafish embryogenesis forms trimeric complexes with Meis3 and Hoxb1b. Dev Dyn 2000, 217(1):109-119.
  • [63]Prince VE, Price AL, Ho RK: Hox gene expression reveals regionalization along the anteroposterior axis of the zebrafish notochord. Dev Genes Evol 1998, 208(9):517-522.
  • [64]Oxtoby E, Jowett T: Cloning of the zebrafish krox-20 gene (krx-20) and its expression during hindbrain development. Nucleic Acids Res 1993, 21(5):1087-1095.
  • [65]Krauss S, Johansen T, Korzh V, Fjose A: Expression of the zebrafish paired box gene pax[zf-b] during early neurogenesis. Development 1991, 113(4):1193-1206.
  • [66]Piotrowski T, Nusslein-Volhard C: The endoderm plays an important role in patterning the segmented pharyngeal region in zebrafish (Danio rerio). Dev Biol 2000, 225(2):339-356.
  • [67]Kiefer P, Strahle U, Dickson C: The zebrafish Fgf-3 gene: cDNA sequence, transcript structure and genomic organization. Gene 1996, 168(2):211-215.
  • [68]Maves L, Kimmel CB: Dynamic and sequential patterning of the zebrafish posterior hindbrain by retinoic acid. Dev Biol 2005, 285(2):593-605.
  • [69]Zannino DA, Sagerstrom CG, Appel B: olig2-Expressing hindbrain cells are required for migrating facial motor neurons. Dev Dyn 2012, 241(2):315-326.
  文献评价指标  
  下载次数:35次 浏览次数:32次