期刊论文详细信息
Genome Biology
The draft genome and transcriptome of Cannabis sativa
Jonathan E Page1  Timothy R Hughes3  Andrew G Sharpe1  Carling M Tallon1  Atina G Cote2  Jake M Stout1  Harm van Bakel2 
[1] National Research Council of Canada, Plant Biotechnology Institute, 110 Gymnasium Place, Saskatoon, SK, S7N 0W9, Canada;Banting and Best Department of Medical Research and Terrence Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, 160 College St. Room 230, Toronto, ON, M5S 3E1, Canada;Department of Molecular Genetics, University of Toronto, #4396 Medical Sciences Building, 1 King's College Circle, Toronto, ON, M5S 1A8 Canada
关键词: cannabinoid;    transcriptome;    genome;    hemp;    marijuana;    cannabis;    Cannabaceae;   
Others  :  1123141
DOI  :  10.1186/gb-2011-12-10-r102
实施日期:2011-10-20,发布日期:2011-10-20
PDF
【 摘 要 】

Background

Cannabis sativa has been cultivated throughout human history as a source of fiber, oil and food, and for its medicinal and intoxicating properties. Selective breeding has produced cannabis plants for specific uses, including high-potency marijuana strains and hemp cultivars for fiber and seed production. The molecular biology underlying cannabinoid biosynthesis and other traits of interest is largely unexplored.

Results

We sequenced genomic DNA and RNA from the marijuana strain Purple Kush using shortread approaches. We report a draft haploid genome sequence of 534 Mb and a transcriptome of 30,000 genes. Comparison of the transcriptome of Purple Kush with that of the hemp cultivar 'Finola' revealed that many genes encoding proteins involved in cannabinoid and precursor pathways are more highly expressed in Purple Kush than in 'Finola'. The exclusive occurrence of Δ9-tetrahydrocannabinolic acid synthase in the Purple Kush transcriptome, and its replacement by cannabidiolic acid synthase in 'Finola', may explain why the psychoactive cannabinoid Δ9-tetrahydrocannabinol (THC) is produced in marijuana but not in hemp. Resequencing the hemp cultivars 'Finola' and 'USO-31' showed little difference in gene copy numbers of cannabinoid pathway enzymes. However, single nucleotide variant analysis uncovered a relatively high level of variation among four cannabis types, and supported a separation of marijuana and hemp.

Conclusions

The availability of the Cannabis sativa genome enables the study of a multifunctional plant that occupies a unique role in human culture. Its availability will aid the development of therapeutic marijuana strains with tailored cannabinoid profiles and provide a basis for the breeding of hemp with improved agronomic characteristics.

【 授权许可】

   
2011 van Bakel et al; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150215033311413.pdf 3264KB PDF download
Figure 5. 6KB Image download
Figure 4. 64KB Image download
Figure 3. 49KB Image download
Figure 2. 61KB Image download
Figure 1. 65KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

【 参考文献 】
  • [1]Schultes RE, Klein WM, Plowman T, Lockwood TE: Cannabis: an example of taxonomic neglect. Bot Mus Leafl Harvard Univ 1974, 23:337-367.
  • [2]Li HL: An archaeological and historical account of cannabis in China. Econ Bot 1973, 28:437-444.
  • [3]Russo EB, Jiang H-E, Li X, Sutton A, Carboni A, Bianco F del, Mandolino G, Potter DJ, Zhao Y-X, Bera S, Zhang Y-B, Lü E-G, Ferguson DK, Hueber F, Zhao L-C, Liu C-J, Wang Y-F, Li C-S: Phytochemical and genetic analyses of ancient cannabis from Central Asia. J Exp Bot 2008, 59:4171-4182.
  • [4]Zias J, Stark H, Sellgman J, Levy R, Werker E, Breuer A, Mechoulam R: Early medical use of cannabis. Nature 1993, 363:215.
  • [5]UNODC: World Drug Report 2011. United Nations Publication, Sales No. E.11.XI.10;
  • [6]Ware MA, Wang T, Shapiro S, Robinson A, Ducruet T, Huynh T, Gamsa A, Bennett GJ, Collet J-P: Smoked cannabis for chronic neuropathic pain: a randomized controlled trial. CMAJ 2010, 182:E694-701.
  • [7]Lakhan SE, Rowland M: Whole plant cannabis extracts in the treatment of spasticity in multiple sclerosis: a systematic review. BMC Neurol 2009, 9:59. BioMed Central Full Text
  • [8]Hillig K: Genetic evidence for speciation in Cannabis (Cannabaceae). Genet Resourc Crop Evol 2005, 52:161-180.
  • [9]Elsohly MA, Slade D: Chemical constituents of marijuana: The complex mixture of natural cannabinoids. Life Sci 2005, 78:539-548.
  • [10]Mehmedic Z, Chandra S, Slade D, Denham H, Foster S, Patel AS, Ross SA, Khan IA, ElSohly MA: Potency trends of Δ9-THC and other cannabinoids in confiscated cannabis preparations from 1993 to 2008. J Forensic Sci 2010, 55:1209-1710.
  • [11]Gaoni Y, Mechoulam R: Isolation, structure, and partial synthesis of an active constituent of hashish. J Am Chem Soc 1964, 86:1646-1647.
  • [12]Joy JE, Watson SJ, Benson JA, (eds.): Marijuana and Medicine: Assessing the Science Base. National Academies Press; 1999.
  • [13]Mechoulam R: Plant cannabinoids: a neglected pharmacological treasure trove. Br J Pharmacol 2005, 146:913-915.
  • [14]DeLong GT, Wolf CE, Poklis A, Lichtman AH: Pharmacological evaluation of the natural constituent of Cannabis sativa, cannabichromene and its modulation by Δ9-tetrahydrocannabinol. Drug Alcohol Depend 2010, 112:126-133.
  • [15]Izzo AA, Borrelli F, Capasso R, Marzo V Di, Mechoulam R: Non-psychotropic plant cannabinoids: new therapeutic opportunities from an ancient herb. Trends Pharmacol Sci 2009, 30:515-527.
  • [16]Sirikantaramas S, Morimoto S, Shoyama Y, Ishikawa Y, Wada Y, Shoyama Y, Taura F: The gene controlling marijuana psychoactivity: molecular cloning and heterologous expression of Δ1-tetrahydrocannabinolic acid synthase from Cannabis sativa L. J Biol Chem 2004, 279:39767-39774.
  • [17]Taura F, Sirikantaramas S, Shoyama Y, Yoshikai K, Shoyama Y, Morimoto S: Cannabidiolic-acid synthase, the chemotype-determining enzyme in the fiber-type Cannabis sativa. FEBS Lett 2007, 581:2929-2934.
  • [18]Taura F, Tanaka S, Taguchi C, Fukamizu T, Tanaka H, Shoyama Y, Morimoto S: Characterization of olivetol synthase, a polyketide synthase putatively involved in cannabinoid biosynthetic pathway. FEBS Lett 2009, 583:2061-2066.
  • [19]Potter D, Clark P, Brown M: Potency of Δ9-THC and other cannabinoids in cannabis in England in 2005: Implications for psychoactivity and pharmacology. J Forensic Sci 2008, 53:90-94.
  • [20]Ming R, Bendahmane A, Renner SS: Sex chromosomes in land plants. Ann Rev Plant Biol 2011, 62:485-514.
  • [21]Sakamoto K, Akiyama Y, Fukui K, Kamada H, Satoh S: Characterization; genome sizes and morphology of sex chromosomes in hemp (Cannabis sativa L.). Cytologia 1998, 63:459-464.
  • [22]NCBI database search October 12, 2011.
  • [23]Marks MD, Tian L, Wenger JP, Omburo SN, Soto-Fuentes W, He J, Gang DR, Weiblen GD, Dixon RA: Identification of candidate genes affecting Δ9-tetrahydrocannabinol biosynthesis in Cannabis sativa. J Exp Bot 2009, 60:3715-2610.
  • [24]Rosenthal E: The Big Book of Buds, Volume 3: More Marijuana Varieties from the World's Great Seed Breeders. 2007.
  • [25]Li R, Zhu H, Ruan J, Qian W, Fang X, Shi Z, Li Y, Li S, Shan G, Kristiansen K, Li S, Yang H, Wang J, Wang J: De novo assembly of human genomes with massively parallel short read sequencing. Genome Research 2010, 20:265-272.
  • [26]Simpson JT, Wong K, Jackman SD, Schein JE, Jones SJM, Birol I: ABySS: a parallel assembler for short read sequence data. Genome Research 2009, 19:1117-1123.
  • [27]Grabherr MG, Haas BJ, Yassour M, Levin JZ, Thompson DA, Amit I, Adiconis X, Fan L, Raychowdhury R, Zeng Q, Chen Z, Mauceli E, Hacohen N, Gnirke A, Rhind N, Palma F di, Birren BW, Nusbaum C, Lindblad-Toh K, Friedman N, Regev A: Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nature Biotech 2011, 29:644-652.
  • [28]Mi H, Lazareva-Ulitsky B, Loo R, Kejariwal A, Vandergriff J, Rabkin S, Guo N, Muruganujan A, Doremieux O, Campbell MJ, Kitano H, Thomas PD: The PANTHER database of protein families, subfamilies, functions and pathways. Nucleic Acids Res 2005, 33:D284-288.
  • [29]TAIR10 Genome Release. [http://www.arabidopsis.org/] webcite
  • [30]The Cannabis Genome Browser. [http://genome.ccbr.utoronto.ca/] webcite
  • [31]Su AI, Cooke MP, Ching KA, Hakak Y, Walker JR, Wiltshire T, Orth AP, Vega RG, Sapinoso LM, Moqrich A, Patapoutian A, Hampton GM, Schultz PG, Hogenesch JB: Large-scale analysis of the human and mouse transcriptomes. Proc Nat Acad Sci USA 2002, 99:4465-4470.
  • [32]Galbraith DW, Birnbaum K: Global studies of cell type-specific gene expression in plants. Ann Rev Plant Biol 2006, 57:451-475.
  • [33]Page JE, Nagel J: Biosynthesis of terpenophenolics in hop and cannabis. In Recent Advances in Phytochemistry Volume 40: Integrative Plant Biochemistry. Edited by Romeo JT. Oxford: Elsevier; 2006:179-210.
  • [34]Phillips MA, León P, Boronat A, Rodríguez-Concepción M: The plastidial MEP pathway: unified nomenclature and resources. Trends Plant Sci 2008, 13:619-623.
  • [35]Fellermeier M, Eisenreich W, Bacher A, Zenk MH: Biosynthesis of cannabinoids. Incorporation experiments with 13C-labeled glucoses. Eur J Biochem 2001, 268:1596-1604.
  • [36]Page JE, Boubakir Z: Aromatic prenyltransferase from cannabis. 2011. PCT patent application WO/2011/017798
  • [37]Turner JC, Hemphill JK, Mahlberg PG: Quantitative determination of cannabinoids in individual glandular trichomes of Cannabis sativa L. (Cannabaceae). Am J Bot 1978, 65:1103-1106.
  • [38]Callaway JC, Laakkonen TT: Cultivation of Cannabis oil seed varieties in Finland. J Int Hemp Assoc 1996, 3:32-34.
  • [39]Pollack JR, Perou CM, Alizadeh AA, Eisen MB, Pergamenschikov A, Williams CF, Jeffrey SS, Botstein D, Brown PO: Genome-wide analysis of DNA copy-number changes using cDNA microarrays. Nat Genet 1999, 23:41-46.
  • [40]Schneider K, Kienow L, Schmelzer E, Colby T, Bartsch M, Miersch O, Wasternack C, Kombrink E, Stuible H-P: A new type of peroxisomal acyl-coenzyme A synthetase from Arabidopsis thaliana has the catalytic capacity to activate biosynthetic precursors of jasmonic acid. J Biol Chem 2005, 280:13962-13972.
  • [41]Medicinal Genomics, LLC. [http://www.medicinalgenomics.com/] webcite
  • [42]Virovets VG: Selection for non-psychoactive hemp varieties (Cannabis sativa L.) in the CIS (former USSR). J Int Hemp Assoc 1996, 3:13-15.
  • [43]de Meijer EPM, Bagatta M, Carboni A, Crucitti P, Moliterni VMC, Ranalli P, Mandolino G: The inheritance of chemical phenotype in Cannabis sativa L. Genetics 2003, 163:335-346.
  • [44]de Meijer EPM, Hammond K, Micheler M: The inheritance of chemical phenotype in Cannabis sativa L.(III): variation in cannabichromene proportion. Euphytica 2009, 165:293-311.
  • [45]Morimoto S, Komatsu K, Taura F, Shoyama Y: Purification and characterization of cannabichromenic acid synthase from Cannabis sativa. Phytochemistry 1998, 49:1525-1529.
  • [46]Dittrich H, Kutchan TM: Molecular cloning, expression, and induction of berberine bridge enzyme, an enzyme essential to the formation of benzophenanthridine alkaloids in the response of plants to pathogenic attack. Proc Nat Acad Sci USA 1991, 88:9969-9973.
  • [47]Datwyler SL, Weiblen GD: Genetic variation in hemp and marijuana (Cannabis sativa L.) according to amplified fragment length polymorphisms. J Forensic Sci 2006, 51:371-351.
  • [48]Faeti V, Mandolino G, Ranalli P: Genetic diversity of Cannabis sativa germplasm based on RAPD markers. Plant Breeding 1996, 115:367-370.
  • [49]Ouyang S, Buell CR: The TIGR Plant Repeat Databases: a collective resource for the identification of repetitive sequences in plants. Nucleic Acids Res 2004, 32:D360-363.
  • [50]Stack SM, Royer SM, Shearer LA, Chang SB, Giovannoni JJ, Westfall DH, White RA, Anderson LK: Role of fluorescence in situ hybridization in sequencing the tomato genome. Cytogenet Genome Res 2009, 124:339-350.
  • [51]Russo EB: Taming THC: potential cannabis synergy and phytocannabinoid-terpenoid entourage effects. British J Pharmacol 2011, 163:1344-1364.
  • [52]Maione S, Piscitelli F, Gatta L, Vita D, Petrocellis L De, Palazzo E, Novellis V de, Marzo V Di: Non-psychoactive cannabinoids modulate the descending pathway of antinociception in anaesthetized rats through several mechanisms of action. British J Pharmacol 2011, 162:584-596.
  • [53]Appendino G, Gibbons S, Giana A, Pagani A, Grassi G, Stavri M, Smith E, Rahman MM: Antibacterial cannabinoids from Cannabis sativa: a structure-activity study. J Nat Prod 2008, 71:1427-1430.
  • [54]Wink M: Plant breeding: importance of plant secondary metabolites for protection against pathogens and herbivores. Theor Appl Genet 1988, 75:225-233.
  • [55]Kliebenstein DJ: Use of secondary metabolite variation in crop improvement. In Plant-Derived Natural Products: Synthesis, Function, and Application. Edited by Osbourn AE, Lanzotti V. Springer; 2009:83-95.
  • [56]Doebley JF, Gaut BS, Smith BD: The molecular genetics of crop domestication. Cell 2006, 127:1309-1321.
  • [57]Myles S, Chia J-M, Hurwitz B, Simon C, Zhong GY, Buckler E, Ware D: Rapid genomic characterization of the genus Vitis. PloS One 2010, 5:e8219.
  • [58]Myles S, Boyko AR, Owens CL, Brown PJ, Grassi F, Aradhya MK, Prins B, Reynolds A, Chia J-M, Ware D, Bustamante CD, Buckler ES: Genetic structure and domestication history of the grape. Proc Nat Acad of Sci USA 2011, 108:3530-3535.
  • [59]Landry BS, Hubert N, Etoh T, Harada JJ, Lincoln SE: A genetic map for Brassica napus based on restriction fragment length polymorphisms detected with expressed DNA sequences. Genome 1991, 34:543-552.
  • [60]Cheung W, Champagne G, Hubert N, Landry B: Comparison of the genetic maps of Brassica napus and Brassica oleracea. Theor Appl Genet 1997, 94:569-582.
  • [61]Meisel L, Fonseca B, Gonzaelz S, Baeza-Yates R, Cambiazo V, Campos R, Gonzalez M, Orellana A, Retamales J, Silva H: A rapid and efficient method for purifying high quality total RNA from peaches (Prunus persica) for functional genomics analyses. Biol Res 2005, 38:83-88.
  • [62]Martin M: Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet J 2011, 17:10-12.
  • [63]Langmead B, Trapnell C, Pop M, Salzberg SL: Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol 2009, 10:R25. BioMed Central Full Text
  • [64]Miller JR, Delcher AL, Koren S, Venter E, Walenz BP, Brownley A, Johnson J, Li K, Mobarry C, Sutton G: Aggressive assembly of pyrosequencing reads with mates. Bioinformatics 2008, 24:2818-2410.
  • [65]Gish W, States DJ: Identification of protein coding regions by database similarity search. Nat Genet 1993, 3:266-272.
  • [66]Kent WJ: BLAT-the BLAST-like alignment tool. Genome Res 2002, 12:656-664.
  • [67]Li W, Godzik A: Cd-hit: a fast program for clustering and comparing large sets of protein or nucleotide sequences. Bioinformatics 2006, 22:1658-1659.
  • [68]Huang X, Madan A: CAP3: A DNA sequence assembly program. Genome Res 1999, 9:868-877.
  • [69]Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, Marth G, Abecasis G, Durbin R: The Sequence Alignment/Map format and SAMtools. Bioinformatics 2009, 25:2078-2079.
  • [70]Loken C, Gruner D, Groer L, Peltier R, Bunn N, Craig M, Henriques T, Dempsey J, Yu C, Chen J, Dursi JL, Chong J, Northrup S, Pinto J, Knecht N, Van Zon R: SciNet: Lessons Learned from Building a Power-efficient Top-20 System and Data Centre. J Phys: Conf Ser 2010, 256:012026.
  • [71]Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S: MEGA5: Molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 2011, 28:2731-2739.
  文献评价指标  
  下载次数:71次 浏览次数:25次