Journal of Experimental & Clinical Cancer Research | |
The role of microRNA-133b and its target gene FSCN1 in gastric cancer | |
Jinsheng He1  Qi Zhou5  Pengfei He2  Jiaqiang Huang1  Jie Liu4  Tao Hong1  Dongling Zou5  Hua Bai3  Lihua Guo1  | |
[1] College of Life Sciences and Bioengineering, Beijing Jiaotong University, Shangyuan Residence, Beijing 100044, Haidian District, China;National Institutes for Food and Drug Control, No.2 Tiantan Xi Li, Beijing 100050, China;Department of Ophthalmology, General Hospital of Bei Jing Command of PLA, #5 Nanmencang, Beijing 100700, DongCheng District, China;School of Computer and Information Technology, Shangyuan Residence, Beijing 100044, Haidian District, China;Department of Gynecologic Oncology, Chongqing Cancer Institute, Chongqing 400030, China | |
关键词: Tumor suppressor; FSCN1; miR-133b; Gastric cancer; | |
Others : 1145493 DOI : 10.1186/s13046-014-0099-0 |
|
received in 2014-07-07, accepted in 2014-11-17, 发布年份 2014 | |
【 摘 要 】
Background
Increasing evidences have documented that microRNAs (miRNAs) act as oncogenes or tumor suppressors in gastric cancer (GC). In this study, we aimed to investigate the expression of miR-133b in a large number of GC samples and elucidate its role in GC carcinogenesis and the detailed mechanism.
Methods
We used Taqman probe stem-loop real-time PCR to accurately measure the levels of miR-133b in 100 pairs of gastric cancer tissues and the adjacent non-neoplastic tissues. miR-133b mimics were overexpressed in GC cell lines, miR-133b inhibitors were also introduced in GES cells to investigate its role on regulating cell proliferation, cell migration and cell invasion. The target of miR-133b was identified by luciferase reporter assay and western blot. Fascin actin-bundling protein 1 (FSCN1) siRNA was used to achieve the knockdown of FSCN1 in GC cells and to investigate its role on modulating GC cell proliferation and invasion.
Results
miR-133b was significantly down-regulated in GC cell lines and in GC tissues compared with adjacent normal tissues. Moreover, lower-level of miR-133b was also associated with venous invasion and a more aggressive tumor phenotype. Re-introduction of miR-133b in GC cells can inhibit cell proliferation, cell migration and invasion. In contrary, knockdown of miR-133b in GES cells can promote cell proliferation and invasion. Further investigation indicated that miR-133b targeted FSCN1 in GC cells and knockdown of FSCN1 can also inhibit GC cell growth and invasion.
Conclusion
Our findings demonstrated that miR-133b was significantly down-regulated in GC tissues and exerted its tumor suppressor role in GC cells. The investigation of the detailed mechanism showed that miR-133b directly targeted FSCN1 which functioned as an oncogenic gene in GC cells. These results suggested that miR-133b can be developed as a new diagnostic marker or therapeutic target for GC.
【 授权许可】
2014 Guo et al.; licensee BioMed Central Ltd.
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
20150402094203497.pdf | 2371KB | download | |
Figure 6. | 95KB | Image | download |
Figure 5. | 44KB | Image | download |
Figure 4. | 74KB | Image | download |
Figure 3. | 91KB | Image | download |
Figure 2. | 99KB | Image | download |
Figure 1. | 58KB | Image | download |
【 图 表 】
Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
Figure 6.
【 参考文献 】
- [1]Meyer HJ, Wilke H: Treatment strategies in gastric cancer. Dtsch Arztebl Int 2011, 108:698-705.
- [2]Wu WK, Lee CW, Cho CH, Fan D, Wu K, Yu J, Sung JJ: MicroRNA dysregulation in gastric cancer: a new player enters the game. Oncogene 2010, 29:5761-5771.
- [3]Ma C, Nong K, Wu B, Dong B, Bai Y, Zhu H, Wang W, Huang X, Yuan Z, Ai K: miR-212 promotes pancreatic cancer cell growth and invasion by targeting the hedgehog signaling pathway receptor patched-1.J Exp Clin Cancer Res 2014, 33:54.
- [4]Iorio MV, Ferracin M, Liu CG, Veronese A, Spizzo R, Sabbioni S, Magri E, Pedriali M, Fabbri M, Campiglio M, Ménard S, Palazzo JP, Rosenberg A, Musiani P, Volinia S, Nenci I, Calin GA, Querzoli P, Negrini M, Croce CM: MicroRNA gene expression deregulation in human breast cancer. Cancer Res 2005, 65:7065-7070.
- [5]Lee EJ, Gusev Y, Jiang J, Nuovo GJ, Lerner MR, Frankel WL, Morgan DL, Postier RG, Brackett DJ, Schmittgen TD: Expression profiling identifies microRNA signature in pancreatic cancer. Int J Cancer 2007, 120:1046-1054.
- [6]Yanaihara N, Caplen N, Bowman E, Seike M, Kumamoto K, Yi M, Stephens RM, Okamoto A, Yokota J, Tanaka T, Calin GA, Liu CG, Croce CM, Harris CC: Unique microRNA molecular profiles in lung cancer diagnosis and prognosis. Cancer Cell 2006, 9:189-198.
- [7]Murakami Y, Yasuda T, Saigo K, Urashima T, Toyoda H, Okanoue T, Shimotohno K: Comprehensive analysis of microRNA expression patterns in hepatocellular carcinoma and non-tumorous tissues. Oncogene 2006, 25:2537-2545.
- [8]Yu S, Lu Z, Liu C, Meng Y, Ma Y, Zhao W, Liu J, Yu J, Chen J: miRNA-96 suppresses KRAS and functions as a tumor suppressor gene in pancreatic cancer. Cancer Res 2010, 70:6015-6025.
- [9]Cui X, Zhao Z, Liu D, Guo T, Li S, Hu J, Liu C, Yang L, Cao Y, Jiang J, Liang W, Liu W, Li S, Wang L, Wang L, Gu W, Wu C, Chen Y, Li F: Inactivation of miR-34a by aberrant CpG methylation in Kazakh patients with esophageal carcinoma.J Exp Clin Cancer Res 2014, 33:20.
- [10]Zhou Y, Huang Z, Wu S, Zang X, Liu M, Shi J: miR-33a is up-regulated in chemoresistant osteosarcoma and promotes osteosarcoma cell resistance to cisplatin by down-regulating TWIST.J Exp Clin Cancer Res 2014, 33:12.
- [11]Liu C, Yu J, Yu S, Lavker RM, Cai L, Liu W, Yang K, He X, Chen S: MicroRNA-21 acts as an oncomir through multiple targets in human hepatocellular carcinoma. J Hepatol 2010, 53:98-107.
- [12]Ventura A, Jacks T: MicroRNAs and cancer: short RNAs go a long way. Cell 2009, 136:586-591.
- [13]Wang Z, Wang J, Yang Y, Hao B, Wang R, Li Y, Wu Q: Loss of has-miR-337-3p expression is associated with lymph node metastasis of human gastric cancer.J Exp Clin Cancer Res 2013, 32:76.
- [14]Hui A, How C, Ito E, Liu FF: Micro-RNAs as diagnostic or prognostic markers in human epithelial malignancies.BMC Cancer 2011, 11:500.
- [15]Panguluri SK, Bhatnagar S, Kumar A, McCarthy JJ, Srivastava AK, Cooper NG, Lundy RF, Kumar A: Genomic profiling of messenger RNAs and microRNAs reveals potential mechanisms of TWEAK-induced skeletal muscle wasting in mice.PLoS One 2010, 5:e8760.
- [16]Koutsoulidou A, Mastroyiannopoulos NP, Furling D, Uney JB, Phylactou LA: Expression of miR-1, miR-133a, miR-133b and miR-206 increases during development of human skeletal muscle.BMC Dev Biol 2011, 11:34.
- [17]Bandrés E, Cubedo E, Agirre X, Malumbres R, Zárate R, Ramirez N, Abajo A, Navarro A, Moreno I, Monzó M, García-Foncillas J: Identification by real-time PCR of 13 mature microRNAs differentially expressed in colorectal cancer and non-tumoral tissues.Mol Cancer 2006, 5:29.
- [18]Wong TS, Liu XB, Chung-Wai Ho A, Po-Wing Yuen A, Wai-Man Ng R, Ignace Wei W: Identification of pyruvate kinase type M2 as potential oncoprotein in squamous cell carcinoma of tongue through microRNA profiling. Int J Cancer 2008, 123:251-257.
- [19]Crawford M, Batte K, Yu L, Wu X, Nuovo GJ, Marsh CB, Otterson GA, Nana-Sinkam SP: MicroRNA 133B targets pro-survival molecules MCL-1 and BCL2L2 in lung cancer. Biochem Biophys Res Commun 2009, 388:483-489.
- [20]Ichimi T, Enokida H, Okuno Y, Kunimoto R, Chiyomaru T, Kawamoto K, Kawahara K, Toki K, Kawakami K, Nishiyama K, Tsujimoto G, Nakagawa M, Seki N: Identification of novel microRNA targets based on microRNA signatures in bladder cancer. Int J Cancer 2009, 125:345-352.
- [21]Hu G, Chen D, Li X, Yang K, Wang H, Wu W: miR-133b regulates the MET proto-oncogene and inhibits the growth of colorectal cancer cells in vitro and in vivo. Cancer Biol Ther 2010, 10:190-197.
- [22]Akçakaya P, Ekelund S, Kolosenko I, Caramuta S, Ozata DM, Xie H, Lindforss U, Olivecrona H, Lui WO: miR-185 and miR-133b deregulation is associated with overall survival and metastasis in colorectal cancer. Int J Oncol 2011, 39:311-318.
- [23]Guo J, Miao Y, Xiao B, Huan R, Jiang Z, Meng D, Wang Y: Differential expression of microRNA species in human gastric cancer versus non-tumorous tissues. J Gastroenterol Hepatol 2009, 24:652-657.
- [24]Yamamoto H, Kohashi K, Fujita A, Oda Y: Fascin-1 overexpression and miR-133b downregulation in the progression of gastrointestinal stromal tumor. Mod Pathol 2013, 26:563-571.
- [25]Wen D, Li S, Ji F, Cao H, Jiang W, Zhu J, Fang X: miR-133b acts as a tumor suppressor and negatively regulates FGFR1 in gastric cancer. Tumour Biol 2013, 34:793-803.
- [26]Kano M, Seki N, Kikkawa N, Fujimura L, Hoshino I, Akutsu Y, Chiyomaru T, Enokida H, Nakagawa M, Matsubara H: miR-145, miR-133a and miR-133b: tumor-suppressive miRNAs target FSCN1 in esophageal squamous cell carcinoma. Int J Cancer 2010, 127:2804-2814.
- [27]Kim SJ, Kim DC, Kim MC, Jung GJ, Kim KH, Jang JS, Kwon HC, Kim YM, Jeong JS: Fascin expression is related to poor survival in gastric cancer. Pathol Int 2012, 62:777-784.
- [28]Wang F, Sun GP, Zou YF, Hao JQ, Zhong F, Ren WJ: MicroRNAs as promising biomarkers for gastric cancer. Cancer Biomark 2012, 11:259-267.
- [29]Tsukamoto Y, Nakada C, Noguchi T, Tanigawa M, Nguyen LT, Uchida T, Hijiya N, Matsuura K, Fujioka T, Seto M, Moriyama M: MicroRNA-375 is downregulated in gastric carcinomas and regulates cell survival by targeting PDK1 and 14-3-3zeta. Cancer Res 2010, 70:2339-2349.
- [30]Tchernitsa O, Kasajima A, Schäfer R, Kuban RJ, Ungethüm U, Györffy B, Neumann U, Simon E, Weichert W, Ebert MP, Röcken C: Systematic evaluation of the miRNA-ome and its downstream effects on mRNA expression identifies gastric cancer progression. J Pathol 2010, 222:310-319.
- [31]Jin Z, Selaru FM, Cheng Y, Kan T, Agarwal R, Mori Y, Olaru AV, Yang J, David S, Hamilton JP, Abraham JM, Harmon J, Duncan M, Montgomery EA, Meltzer SJ: MicroRNA-192 and −215 are upregulated in human gastric cancer in vivo and suppress ALCAM expression in vitro. Oncogene 2011, 30:1577-1585.
- [32]Oh HK, Tan AL, Das K, Ooi CH, Deng NT, Tan IB, Beillard E, Lee J, Ramnarayanan K, Rha SY, Palanisamy N, Voorhoeve PM, Tan P: Genomic loss of miR-486 regulates tumor progression and the OLFM4 antiapoptotic factor in gastric cancer. Clin Cancer Res 2011, 17:2657-2667.
- [33]Li X, Zhang Y, Zhang H, Liu X, Gong T, Li M, Sun L, Ji G, Shi Y, Han Z, Han S, Nie Y, Chen X, Zhao Q, Ding J, Wu K, Daiming F: miRNA-223 promotes gastric cancer invasion and metastasis by targeting tumor suppressor EPB41L3. Mol Cancer Res 2011, 9:824-833.
- [34]Li X, Luo F, Li Q, Xu M, Feng D, Zhang G, Wu W: Identification of new aberrantly expressed miRNAs in intestinal-type gastric cancer and its clinical significance. Oncol Rep 2011, 26:1431-1439.
- [35]Wu WY, Xue XY, Chen ZJ, Han SL, Huang YP, Zhang LF, Zhu GB, Shen X: Potentially predictive microRNAs of gastric cancer with metastasis to lymph node. World J Gastroenterol 2011, 17:3645-3651.
- [36]Inoue T, Iinuma H, Ogawa E, Inaba T, Fukushima R: Clinicopathological and prognostic significance of microRNA-107 and its relationship to DICER1 mRNA expression in gastric cancer. Oncol Rep 2012, 27:1759-1764.
- [37]Petrocca F, Visone R, Onelli MR, Shah MH, Nicoloso MS, de Martino I, Iliopoulos D, Pilozzi E, Liu CG, Negrini M, Cavazzini L, Volinia S, Alder H, Ruco LP, Baldassarre G, Croce CM, Vecchione A: E2F1-regulated microRNAs impair TGFbeta-dependent cell-cycle arrest and apoptosis in gastric cancer. Cancer Cell 2008, 13:272-286.
- [38]Kim YK, Yu J, Han TS, Park SY, Namkoong B, Kim DH, Hur K, Yoo MW, Lee HJ, Yang HK, Kim VN: Functional links between clustered microRNAs: suppression of cell-cycle inhibitors by microRNA clusters in gastric cancer. Nucleic Acids Res 2009, 37:1672-1681.
- [39]Guo SL, Peng Z, Yang X, Fan KJ, Ye H, Li ZH, Wang Y, Xu XL, Li J, Wang YL, Teng Y, Yang X: miR-148a promoted cell proliferation by targeting p27 in gastric cancer cells. Int J Biol Sci 2011, 7:567-574.
- [40]Tan VY, Lewis SJ, Adams JC, Martin RM: Association of fascin-1 with mortality, disease progression and metastasis in carcinomas: a systematic review and meta-analysis.BMC Med 2013, 11:52.
- [41]Fu H, Wen JF, Hu ZL, Luo GQ, Ren HZ: Knockdown of fascin1 expression suppresses the proliferation and metastasis of gastric cancer cells. Pathology 2009, 41:655-660.
- [42]Kim SJ, Choi IJ, Cheong TC, Lee SJ, Lotan R, Park SH, Chun KH: Galectin-3 increases gastric cancer cell motility by up-regulating fascin-1 expression. Gastroenterology 2010, 138:1035-1045. e1-2
- [43]Tsai WC, Jin JS, Chang WK, Chan DC, Yeh MK, Cherng SC, Lin LF, Sheu LF, Chao YC: Association of cortactin and fascin-1 expression in gastric adenocarcinoma: correlation with clinicopathological parameters. J Histochem Cytochem 2007, 55:955-962.