期刊论文详细信息
BMC Cancer
MiR-133b is frequently decreased in gastric cancer and its overexpression reduces the metastatic potential of gastric cancer cells
Yu Zhao1  Jie Huang1  Li Zhang1  Ying Qu1  Jianfang Li1  Beiqin Yu1  Min Yan1  Yingyan Yu1  Bingya Liu1  Zhenggang Zhu1 
[1] Shanghai Key Laboratory of Gastric Neoplasms, Department of Surgery, Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Rui Jin Road, Shanghai 200025, People’s Republic of China
关键词: Metastasis;    Gastric cancer;    miR-133b;    MicroRNA;   
Others  :  859122
DOI  :  10.1186/1471-2407-14-34
 received in 2013-05-29, accepted in 2014-01-16,  发布年份 2014
PDF
【 摘 要 】

Background

Emerging evidence has shown that microRNAs are involved in gastric cancer development and progression. Here we examine the role of miR-133b in gastric cancer.

Methods

Quantitative real-time PCR analysis was performed in 140 patient gastric cancer tissues and 8 gastric cancer cell lines. The effects of miR-133b in gastric cancer cells metastasis were examined by scratch assay, transwell migration and matrigel invasion. In vivo effects of miR-133b were examined in an intraperitoneal mouse tumor model. Targets of miR-133b were predicted by bioinformatics tools and validated by luciferase reporter analyses, western blot, and quantitative real-time PCR.

Results

MiR-133b was significantly downregulated in 70% (98/140) of gastric cancer patients. Expression of miR-133b was negatively correlated with lymph node metastasis of gastric cancer in patients. Similarly, the expression of miR-133b was significantly lower in seven tested gastric cancer cell lines than in the immortalized non-cancerous GES-1 gastric epithelial cells. Overexpression of miR-133b markedly inhibited metastasis of gastric cancer cells in vitro and in vivo. Moreover, the transcriptional factor Gli1 was identified as a direct target for miR-133b. Level of Gli1 protein but not mRNA was decreased by miR-133b. Activity of luciferase with Gli1 3′-untranslated region was markedly decreased by miR-133b in gastric cancer cells. Gli1 target genes, OPN and Zeb2, were also inhibited by miR133b.

Conclusions

MiR-133b is frequently decreased in gastric cancer. Overexpression of miR-133b inhibits cell metastasis in vitro and in vivo partly by directly suppressing expression of Gli1 protein. These results suggested that miR-133b plays an important role in gastric cancer metastasis.

【 授权许可】

   
2014 Zhao et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20140724080059710.pdf 2218KB PDF download
159KB Image download
65KB Image download
141KB Image download
58KB Image download
【 图 表 】

【 参考文献 】
  • [1]Jemal A, Bray F, Center MM, Ferlay J, Ward E, Forman D: Global cancer statistics. CA Cancer J Clin 2011, 61(2):69-90.
  • [2]Stahlhut Espinosa CE, Slack FJ: The role of microRNAs in cancer. Yale J Biol Med 2006, 79(3–4):131-140.
  • [3]Esquela-Kerscher A, Slack FJ: Oncomirs - microRNAs with a role in cancer. Nat Rev Canc 2006, 6(4):259-269.
  • [4]Ji Q, Hao XB, Meng Y, Zhang M, DeSano J, Fan DM, Xu L: Restoration of tumor suppressor miR-34 inhibits human p53-mutant gastric cancer tumorspheres. BMC Cancer 2008, 8:266. BioMed Central Full Text
  • [5]Zhang CZ, Han L, Zhang AL, Fu YC, Yue XA, Wang GX, Jia ZF, Pu PY, Zhang QY, Kang CS: MicroRNA-221 and microRNA-222 regulate gastric carcinoma cell proliferation and radioresistance by targeting PTEN. BMC Cancer 2010, 10:367. BioMed Central Full Text
  • [6]Yu BQ, Su LP, Li JF, Cai Q, Yan M, Chen XH, Yu YY, Gu QL, Zhu ZG, Liu BY: microrna expression signature of gastric cancer cells relative to normal gastric mucosa. Mol Med Rep 2012, 6(4):821-826.
  • [7]Feng R, Chen X, Yu Y, Su L, Yu B, Li J, Cai Q, Yan M, Liu B, Zhu Z: miR-126 functions as a tumour suppressor in human gastric cancer. Cancer Lett 2010, 298(1):50-63.
  • [8]Li C, Nie H, Wang M, Su L, Li J, Yu B, Wei M, Ju J, Yu Y, Yan M, et al.: MicroRNA-409-3p regulates cell proliferation and apoptosis by targeting PHF10 in gastric cancer. Cancer Lett 2012, 320(2):189-197.
  • [9]Wang M, Li C, Nie H, Lv X, Qu Y, Yu B, Su L, Li J, Chen X, Ju J, et al.: Down-regulated miR-625 suppresses invasion and metastasis of gastric cancer by targeting ILK. FEBS Lett 2012, 586(16):2382-2388.
  • [10]Zhang BG, Li JF, Yu BQ, Zhu ZG, Liu BY, Yan M: microRNA-21 promotes tumor proliferation and invasion in gastric cancer by targeting PTEN. Oncol Rep 2012, 27(4):1019-1026.
  • [11]Wang M, Li C, Yu B, Su L, Li J, Ju J, Yu Y, Gu Q, Zhu Z, Liu B: Overexpressed miR-301a promotes cell proliferation and invasion by targeting RUNX3 in gastric cancer. J Gastroenterol 2013, 48(9):1023-1033.
  • [12]Li CL, Nie H, Wang M, Su LP, Li JF, Yu YY, Yan M, Qu QL, Zhu ZG, Liu BY: microRNA-155 is downregulated in gastric cancer cells and involved in cell metastasis. Oncol Rep 2012, 27(6):1960-1966.
  • [13]Guo J, Miao Y, Xiao B, Huan R, Jiang Z, Meng D, Wang Y: Differential expression of microRNA species in human gastric cancer versus non-tumorous tissues. J Gastroenterol Hepatol 2009, 24(4):652-657.
  • [14]Chen JF, Mandel EM, Thomson JM, Wu Q, Callis TE, Hammond SM, Conlon FL, Wang DZ: The role of microRNA-1 and microRNA-133 in skeletal muscle proliferation and differentiation. Nat Genet 2006, 38(2):228-233.
  • [15]Bandres E, Cubedo E, Agirre X, Malumbres R, Zarate R, Ramirez N, Abajo A, Navarro A, Moreno I, Monzo M, et al.: Identification by real-time PCR of 13 mature microRNAs differentially expressed in colorectal cancer and non-tumoral tissues. Mol Cancer 2006, 5:29.
  • [16]Wong TS, Liu XB, Wong BY, Ng RW, Yuen AP, Wei WI: Mature miR-184 as potential oncogenic microRNA of squamous cell carcinoma of tongue. Clin Cancer Res 2008, 14(9):2588-2592.
  • [17]Liu X, Chen Z, Yu J, Xia J, Zhou X: MicroRNA profiling and head and neck cancer. Comp Funct Genom 2009, 2009:837514.
  • [18]Crawford M, Batte K, Yu L, Wu X, Nuovo GJ, Marsh CB, Otterson GA, Nana-Sinkam SP: MicroRNA 133B targets pro-survival molecules MCL-1 and BCL2L2 in lung cancer. Biochem Biophys Res Commun 2009, 388(3):483-489.
  • [19]Ichimi T, Enokida H, Okuno Y, Kunimoto R, Chiyomaru T, Kawamoto K, Kawahara K, Toki K, Kawakami K, Nishiyama K, et al.: Identification of novel microRNA targets based on microRNA signatures in bladder cancer. Int J Cancer 2009, 125(2):345-352.
  • [20]Kano M, Seki N, Kikkawa N, Fujimura L, Hoshino I, Akutsu Y, Chiyomaru T, Enokida H, Nakagawa M, Matsubara H: miR-145, miR-133a and miR-133b: Tumor-suppressive miRNAs target FSCN1 in esophageal squamous cell carcinoma. Int J Cancer 2010, 127(12):2804-2814.
  • [21]Qin W, Dong P, Ma C, Mitchelson K, Deng T, Zhang L, Sun Y, Feng X, Ding Y, Lu X, et al.: MicroRNA-133b is a key promoter of cervical carcinoma development through the activation of the ERK and AKT1 pathways. Oncogene 2012, 31(36):4067-4075.
  • [22]Nohata N, Hanazawa T, Enokida H, Seki N: microRNA-1/133a and microRNA-206/133b clusters: dysregulation and functional roles in human cancers. Oncotarget 2012, 3(1):9-21.
  • [23]Mitas M, Almeida JS, Mikhitarian K, Gillanders WE, Lewin DN, Spyropoulos DD, Hoover L, Graham A, Glenn T, King P, et al.: Accurate discrimination of Barrett’s esophagus and esophageal adenocarcinoma using a quantitative three-tiered algorithm and multimarker real-time reverse transcription-PCR. Clin Cancer Res 2005, 11(6):2205-2214.
  • [24]Lee JL, Wang MJ, Sudhir PR, Chen GD, Chi CW, Chen JY: Osteopontin promotes integrin activation through outside-in and inside-out mechanisms: OPN-CD44V interaction enhances survival in gastrointestinal cancer cells. Cancer Res 2007, 67(5):2089-2097.
  • [25]Hsu SD, Chu CH, Tsou AP, Chen SJ, Chen HC, Hsu PW, Wong YH, Chen YH, Chen GH, Huang HD: miRNAMap 2.0: genomic maps of microRNAs in metazoan genomes. Nucleic Acids Res 2008, 36(Database issue):D165-D169.
  • [26]John B, Enright AJ, Aravin A, Tuschl T, Sander C, Marks DS: Human MicroRNA targets. PLoS Biol 2004, 2(11):e363.
  • [27]Lewis BP, Shih IH, Jones-Rhoades MW, Bartel DP, Burge CB: Prediction of mammalian microRNA targets. Cell 2003, 115(7):787-798.
  • [28]Kruger J, Rehmsmeier M: RNAhybrid: microRNA target prediction easy, fast and flexible. Nucleic Acids Res 2006, 34(Web Server issue):W451-W454.
  • [29]Yanai K, Nagai S, Wada J, Yamanaka N, Nakamura M, Torata N, Noshiro H, Tsuneyoshi M, Tanaka M, Katano M: Hedgehog signaling pathway is a possible therapeutic target for gastric cancer. J Surg Oncol 2007, 95(1):55-62.
  • [30]Yoo YA, Kang MH, Lee HJ, Kim BH, Park JK, Kim HK, Kim JS, Oh SC: Sonic hedgehog pathway promotes metastasis and lymphangiogenesis via activation of Akt, EMT, and MMP-9 pathway in gastric cancer. Cancer Res 2011, 71(22):7061-7070.
  • [31]Ohta H, Aoyagi K, Fukaya M, Danjoh I, Ohta A, Isohata N, Saeki N, Taniguchi H, Sakamoto H, Shimoda T: Cross talk between hedgehog and epithelial–mesenchymal transition pathways in gastric pit cells and in diffuse-type gastric cancers. Br J Cancer 2008, 100(2):389-398.
  • [32]Dai YH, Tang YP, Zhu HY, Lv L, Chu Y, Zhou YQ, Huo JR: ZEB2 promotes the metastasis of gastric cancer and modulates epithelial mesenchymal transition of gastric cancer cells. Dig Dis Sci 2012, 57(5):1253-1260.
  • [33]Ue T, Yokozaki H, Kitadai Y, Yamamoto S, Yasui W, Ishikawa T, Tahara E: Co‒expression of osteopontin and CD44v9 in gastric cancer. Int J Canc 1998, 79(2):127-132.
  • [34]Tang X, Li J, Yu B, Su L, Yu Y, Yan M, Liu B, Zhu Z: Osteopontin splice variants differentially exert clinicopathological features and biological functions in gastric cancer. Int J Biol Sci 2013, 9(1):55-66.
  • [35]Isohata N, Aoyagi K, Mabuchi T, Daiko H, Fukaya M, Ohta H, Ogawa K, Yoshida T, Sasaki H: Hedgehog and epithelial-mesenchymal transition signaling in normal and malignant epithelial cells of the esophagus. Int J Cancer 2009, 125(5):1212-1221.
  • [36]Das S, Harris LG, Metge BJ, Liu S, Riker AI, Samant RS, Shevde LA: The hedgehog pathway transcription factor GLI1 promotes malignant behavior of cancer cells by up-regulating osteopontin. J Biol Chem 2009, 284(34):22888-22897.
  • [37]Lim LP, Glasner ME, Yekta S, Burge CB, Bartel DP: Vertebrate microRNA genes. Science 2003, 299(5612):1540-1540.
  • [38]Landgraf P, Rusu M, Sheridan R, Sewer A, Iovino N, Aravin A, Pfeffer S, Rice A, Kamphorst AO, Landthaler M, et al.: A mammalian microRNA expression atlas based on small RNA library sequencing. Cell 2007, 129(7):1401-1414.
  • [39]Wu WY, Xue XY, Chen ZJ, Han SL, Huang YP, Zhang LF, Zhu GB, Shen X: Potentially predictive microRNAs of gastric cancer with metastasis to lymph node. World J Gastroenterol 2011, 17(31):3645-3651.
  • [40]Cho WC: MicroRNAs in cancer - from research to therapy. Biochim Biophys Acta 2010, 1805(2):209-217.
  • [41]Kinzler KW, Bigner SH, Bigner DD, Trent JM, Law ML, O’Brien SJ, Wong AJ, Vogelstein B: Identification of an amplified, highly expressed gene in a human glioma. Science 1987, 236(4797):70-73.
  • [42]Lee J, Platt KA, Censullo P, Ruiz i Altaba A: Gli1 is a target of Sonic hedgehog that induces ventral neural tube development. Development 1997, 124(13):2537-2552.
  • [43]Ji Z, Mei FC, Xie J, Cheng X: Oncogenic KRAS activates hedgehog signaling pathway in pancreatic cancer cells. J Biol Chem 2007, 282(19):14048-14055.
  • [44]Yoo YA, Kang MH, Kim JS, Oh SC: Sonic hedgehog signaling promotes motility and invasiveness of gastric cancer cells through TGF-beta-mediated activation of the ALK5-Smad 3 pathway. Carcinogenesis 2008, 29(3):480-490.
  • [45]Katoh Y, Katoh M: Integrative genomic analyses on GLI1: positive regulation of GLI1 by Hedgehog-GLI, TGFbeta-Smads, and RTK-PI3K-AKT signals, and negative regulation of GLI1 by Notch-CSL-HES/HEY, and GPCR-Gs-PKA signals. Int J Oncol 2009, 35(1):187-192.
  • [46]Stecca B, Ruiz i Altaba A: A GLI1-p53 inhibitory loop controls neural stem cell and tumour cell numbers. EMBO J 2009, 28(6):663-676.
  • [47]Li X, Deng W, Nail CD, Bailey SK, Kraus MH, Ruppert JM, Lobo-Ruppert SM: Snail induction is an early response to Gli1 that determines the efficiency of epithelial transformation. Oncogene 2006, 25(4):609-621.
  • [48]Feldmann G, Dhara S, Fendrich V, Bedja D, Beaty R, Mullendore M, Karikari C, Alvarez H, Iacobuzio-Donahue C, Jimeno A, et al.: Blockade of hedgehog signaling inhibits pancreatic cancer invasion and metastases: a new paradigm for combination therapy in solid cancers. Cancer Res 2007, 67(5):2187-2196.
  • [49]Varnat F, Siegl-Cachedenier I, Malerba M, Gervaz P, Ruiz i Altaba A: Loss of WNT-TCF addiction and enhancement of HH-GLI1 signalling define the metastatic transition of human colon carcinomas. EMBO Mol Med 2010, 2(11):440-457.
  • [50]Katoh Y, Katoh M: Hedgehog signaling pathway and gastric cancer. Cancer Biol Ther 2005, 4(10):1050-1054.
  • [51]Ma X, Chen K, Huang S, Zhang X, Adegboyega PA, Evers BM, Zhang H, Xie J: Frequent activation of the hedgehog pathway in advanced gastric adenocarcinomas. Carcinogenesis 2005, 26(10):1698-1705.
  • [52]Ma XL, Sun HI, Wang YS, Huang SH, Xie JW, Zhang HW: Study of Sonic hedgehog signaling pathway related molecules in gastric carcinoma. World J Gastroenterol 2006, 12(25):3965-3969.
  • [53]Wen D, Li S, Ji F, Cao H, Jiang W, Zhu J, Fang X: miR-133b acts as a tumor suppressor and negatively regulates FGFR1 in gastric cancer. Tumour Biol 2013, 34(2):793-803.
  文献评价指标  
  下载次数:12次 浏览次数:5次