期刊论文详细信息
Clinical Epigenetics
Environmental chemicals and DNA methylation in adults: a systematic review of the epidemiologic evidence
Maria Tellez-Plaza4  Ana Navas-Acien7  Jose M Ordovas5  Josep Redon1  Wan-Yee Tang4  Pilar Rentero-Garrido2  Chin-Chi Kuo6  Adrian Ruiz-Hernandez3 
[1] CIBER Physiopathology of Obesity and Nutrition (CIBEROBN), Institute of Health Carlos III, Minister of Health, Madrid, Spain;Genotyping and Genetic Diagnosis Unit, Institute for Biomedical Research INCLIVA, Av. Menendez Pelayo, 4 Accesorio, Valencia, 46010, Spain;Area of Cardiometabolic and Renal Risk, Institute for Biomedical Research Hospital Clinic de Valencia INCLIVA, Av. Menendez Pelayo 4, Accesorio, Valencia, 46010, Spain;Department of Environmental Health Sciences, Johns Hopkins University Bloomberg School of Public Health, 615 North Wolfe Street, Baltimore 21205, MD, USA;Instituto Madrileño de Estudios Avanzados en Alimentación, Ctra. de Cantoblanco 8, Madrid, 28049, Spain;Department of Internal Medicine, Kidney Institute and Division of Nephrology, China Medical University Hospital and College of Medicine, China Medical University, 2 Yude Road, Taichung 40447, Taiwan;Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, 615 North Wolfe Street, Baltimore 21205, MD, USA
关键词: Polycyclic aromatic hydrocarbons;    Bisphenol A;    Persistent organic pollutants;    Metals;    Mercury;    Lead;    Cadmium;    Environmental chemicals;    DNA methylation;    Systematic review;   
Others  :  1210205
DOI  :  10.1186/s13148-015-0055-7
 received in 2014-11-05, accepted in 2015-02-09,  发布年份 2015
PDF
【 摘 要 】

Current evidence supports the notion that environmental exposures are associated with DNA-methylation and expression changes that can impact human health. Our objective was to conduct a systematic review of epidemiologic studies evaluating the association between environmental chemicals with DNA methylation levels in adults. After excluding arsenic, recently evaluated in a systematic review, we identified a total of 17 articles (6 on cadmium, 4 on lead, 2 on mercury, 1 on nickel, 1 on antimony, 1 on tungsten, 5 on persistent organic pollutants and perfluorinated compounds, 1 on bisphenol A, and 3 on polycyclic aromatic hydrocarbons). The selected articles reported quantitative methods to determine DNA methylation including immunocolorimetric assays for total content of genomic DNA methylation, and microarray technologies, methylation-specific quantitative PCR, Luminometric Methylation Assay (LUMA), and bisulfite pyrosequencing for DNA methylation content of genomic sites such as gene promoters, LINE-1, Alu elements, and others. Considering consistency, temporality, strength, dose-response relationship, and biological plausibility, we concluded that the current evidence is not sufficient to provide inference because differences across studies and limited samples sizes make it difficult to compare across studies and to evaluate sources of heterogeneity. Important questions for future research include the need for larger and longitudinal studies, the validation of findings, and the systematic evaluation of the dose-response relationships. Future studies should also consider the evaluation of epigenetic marks recently in the research spotlight such as DNA hydroxymethylation and the role of underlying genetic variants.

【 授权许可】

   
2015 Ruiz-Hernandez et al.; licensee BioMed Central.

【 预 览 】
附件列表
Files Size Format View
20150603034724298.pdf 806KB PDF download
Figure 2. 57KB Image download
Figure 1. 60KB Image download
【 图 表 】

Figure 1.

Figure 2.

【 参考文献 】
  • [1]Pruss-Ustun A, Vickers C, Haefliger P, Bertollini R: Knowns and unknowns on burden of disease due to chemicals: a systematic review. Environ Health 2011, 10:9.
  • [2]Lee DH, Jacobs DR Jr, Porta M: Hypothesis: a unifying mechanism for nutrition and chemicals as lifelong modulators of DNA hypomethylation. Environ Health Perspect 2009, 117:1799-1802.
  • [3]Chia N, Wang L, Lu X, Senut MC, Brenner C, Ruden DM: Hypothesis: environmental regulation of 5-hydroxymethylcytosine by oxidative stress. Epigenetics 2011, 6:853-856.
  • [4]Takiguchi M, Achanzar WE, Qu W, Li G, Waalkes MP: Effects of cadmium on DNA-(Cytosine-5) methyltransferase activity and DNA methylation status during cadmium-induced cellular transformation. Exp Cell Res 2003, 286:355-365.
  • [5]Chervona Y, Costa M: The control of histone methylation and gene expression by oxidative stress, hypoxia, and metals. Free Radic Biol Med 2012, 53:1041-1047.
  • [6]Dai H, Wang Z: Histone modification patterns and their responses to environment. Curr Envir Health Rpt 2014, 1:11-21.
  • [7]Waterland RA, Michels KB: Epigenetic epidemiology of the developmental origins hypothesis. Annu Rev Nutr 2007, 27:363-388.
  • [8]Bogdarina I, Welham S, King PJ, Burns SP, Clark AJ: Epigenetic modification of the renin-angiotensin system in the fetal programming of hypertension. Circ Res 2007, 100:520-526.
  • [9]Heijmans BT, Tobi EW, Stein AD, Putter H, Blauw GJ, Susser ES, et al.: Persistent epigenetic differences associated with prenatal exposure to famine in humans. Proc Natl Acad Sci U S A 2008, 105:17046-17049.
  • [10]Tobi EW, Lumey LH, Talens RP, Kremer D, Putter H, Stein AD, et al.: DNA methylation differences after exposure to prenatal famine are common and timing- and sex-specific. Hum Mol Genet 2009, 18:4046-4053.
  • [11]Fraga MF, Ballestar E, Paz MF, Ropero S, Setien F, Ballestar ML, et al.: Epigenetic differences arise during the lifetime of monozygotic twins. Proc Natl Acad Sci U S A 2005, 102:10604-10609.
  • [12]Bailey KA, Fry RC: Arsenic-associated changes to the epigenome: What are the functional consequences? Curr Envir Health Rpt. 2014;1:22-34.
  • [13]Wan ES, Qiu W, Baccarelli A, Carey VJ, Bacherman H, Rennard SI, et al.: Cigarette smoking behaviors and time since quitting are associated with differential DNA methylation across the human genome. Hum Mol Genet 2012, 21:3073-3082.
  • [14]Joubert BR, Haberg SE, Nilsen RM, Wang X, Vollset SE, Murphy SK, et al.: 450 K epigenome-wide scan identifies differential DNA methylation in newborns related to maternal smoking during pregnancy. Environ Health Perspect 2012, 120:1425-1431.
  • [15]Shenker NS, Polidoro S, van Veldhoven K, Sacerdote C, Ricceri F, Birrell MA, et al.: Epigenome-wide association study in the European Prospective Investigation into Cancer and Nutrition (EPIC-Turin) identifies novel genetic loci associated with smoking. Hum Mol Genet 2013, 22:843-851.
  • [16]Zeilinger S, Kuhnel B, Klopp N, Baurecht H, Kleinschmidt A, Gieger C, et al.: Tobacco smoking leads to extensive genome-wide changes in DNA methylation. PLoS One 2013, 8:e63812.
  • [17]Sun YV, Smith AK, Conneely KN, Chang Q, Li W, Lazarus A, et al.: Epigenomic association analysis identifies smoking-related DNA methylation sites in African Americans. Hum Genet 2013, 132:1027-1037.
  • [18]Breton CV, Marutani AN: Air pollution and epigenetics: recent findings. Curr Envir Health Rpt. 2014;1:35-45.
  • [19]Tellez-Plaza M, Tang WY, Shang Y, Umans JG, Francesconi KA, Goessler W, et al.: Association of global DNA methylation and global DNA hydroxymethylation with metals and other exposures in human blood DNA samples. Environ Health Perspect 2014, 122:946-54.
  • [20]Itoh H, Iwasaki M, Kasuga Y, Yokoyama S, Onuma H, Nishimura H, et al.: Association between serum organochlorines and global methylation level of leukocyte DNA among Japanese women: a cross-sectional study. Sci Total Environ 2014, 490:603-609.
  • [21]Kim JH, Rozek LS, Soliman AS, Sartor MA, Hablas A, Seifeldin IA, et al.: Bisphenol A-associated epigenomic changes in prepubescent girls: a cross-sectional study in Gharbiah. Egypt Environ Health 2013, 12:33.
  • [22]Huen K, Yousefi P, Bradman A, Yan L, Harley KG, Kogut K, et al.: Effects of age, sex, and persistent organic pollutants on DNA methylation in children. Environ Mol Mutagen 2014, 55:209-222.
  • [23]Herbstman JB, Tang D, Zhu D, Qu L, Sjodin A, Li Z, et al.: Prenatal exposure to polycyclic aromatic hydrocarbons, benzo[a]pyrene-DNA adducts, and genomic DNA methylation in cord blood. Environ Health Perspect 2012, 120:733-738.
  • [24]Guerrero-Preston R, Goldman LR, Brebi-Mieville P, Ili-Gangas C, Lebron C, Witter FR, et al.: Global DNA hypomethylation is associated with in utero exposure to cotinine and perfluorinated alkyl compounds. Epigenetics 2010, 5:539-546.
  • [25]Pilsner JR, Hu H, Ettinger A, Sanchez BN, Wright RO, Cantonwine D, et al.: Influence of prenatal lead exposure on genomic methylation of cord blood DNA. Environ Health Perspect 2009, 117:1466-1471.
  • [26]Kippler M, Engstrom K, Mlakar SJ, Bottai M, Ahmed S, Hossain MB, et al.: Sex-specific effects of early life cadmium exposure on DNA methylation and implications for birth weight. Epigenetics 2013, 8:494-503.
  • [27]Kovatsi L, Georgiou E, Ioannou A, Haitoglou C, Tzimagiorgis G, Tsoukali H, et al.: p16 promoter methylation in Pb2+ -exposed individuals. Clin Toxicol (Phila) 2010, 48:124-128.
  • [28]Li C, Xu M, Wang S, Yang X, Zhou S, Zhang J, et al.: Lead exposure suppressed ALAD transcription by increasing methylation level of the promoter CpG islands. Toxicol Lett 2011, 203:48-53.
  • [29]Hanna CW, Bloom MS, Robinson WP, Kim D, Parsons PJ, Vom Saal FS, et al.: DNA methylation changes in whole blood is associated with exposure to the environmental contaminants, mercury, lead, cadmium and bisphenol A, in women undergoing ovarian stimulation for IVF. Hum Reprod 2012, 27:1401-1410.
  • [30]Tajuddin SM, Amaral AF, Fernandez AF, Rodriguez-Rodero S, Rodriguez RM, Moore LE, et al.: Genetic and non-genetic predictors of LINE-1 methylation in leukocyte DNA. Environ Health Perspect 2013, 121:650-656.
  • [31]Longnecker MP, Berlin JA, Orza MJ, Chalmers TC: A meta-analysis of alcohol consumption in relation to risk of breast cancer. JAMA 1988, 260:652-656.
  • [32]U.S. Department of Health and Human Services. A report of the surgeon general: How tobacco smoke causes disease. The biology and behavioral basis for smoking-attributable diseases. 2010. Rocksville, Maryland. http://www.surgeongeneral.gov/library/tobaccosmoke/report/index.html. Accessed 14 Jan 2015.
  • [33]Agency for Toxic Substances and Disease Registry (ATSDR). Toxicological profile for cadmium. 2012. http://www.atsdr.cdc.gov/toxprofiles/tp.asp?id=48&tid=15. Accessed 14 Jan 2015.
  • [34]Tellez-Plaza M, Navas-Acien A, Caldwell KL, Menke A, Muntner P, Guallar E: Reduction in cadmium exposure in the United States population, 1988-2008: the contribution of declining smoking rates. Environ Health Perspect 2012, 120:204-209.
  • [35]Egwuogu H, Shendell DG, Okosun IS, Goodfellow L: The effect of urinary cadmium on cardiovascular fitness as measured by VO2 max in white, black and Mexican Americans. Environ Res 2009, 109:292-300.
  • [36]Gallagher CM, Kovach JS, Meliker JR: Urinary cadmium and osteoporosis in U.S. Women > or = 50 years of age: NHANES 1988-1994 and 1999-2004. Environ Health Perspect 2008, 116:1338-1343.
  • [37]Navas-Acien A, Selvin E, Sharrett AR, Calderon-Aranda E, Silbergeld E, Guallar E: Lead, cadmium, smoking, and increased risk of peripheral arterial disease. Circulation 2004, 109:3196-3201.
  • [38]Navas-Acien A, Silbergeld EK, Sharrett R, Calderon-Aranda E, Selvin E, Guallar E: Metals in urine and peripheral arterial disease. Environ Health Perspect 2005, 113:164-169.
  • [39]Navas-Acien A, Tellez-Plaza M, Guallar E, Muntner P, Silbergeld E, Jaar B, et al.: Blood cadmium and lead and chronic kidney disease in US adults: a joint analysis. Am J Epidemiol 2009, 170:1156-1164.
  • [40]Peters JL, Perlstein TS, Perry MJ, McNeely E, Weuve J: Cadmium exposure in association with history of stroke and heart failure. Environ Res 2010, 110:199-206.
  • [41]Tellez-Plaza M, Navas-Acien A, Menke A, Crainiceanu CM, Pastor-Barriuso R, Guallar E: Cadmium exposure and all-cause and cardiovascular mortality in the U.S. general population. Environ Health Perspect 2012, 120:1017-1022.
  • [42]Jarup L, Rogenfelt A, Elinder CG, Nogawa K, Kjellstrom T: Biological half-time of cadmium in the blood of workers after cessation of exposure. Scand J Work Environ Health 1983, 9:327-331.
  • [43]Benbrahim-Tallaa L, Waterland RA, Dill AL, Webber MM, Waalkes MP: Tumor suppressor gene inactivation during cadmium-induced malignant transformation of human prostate cells correlates with overexpression of de novo DNA methyltransferase. Environ Health Perspect 2007, 115:1454-1459.
  • [44]Jiang G, Xu L, Song S, Zhu C, Wu Q, Zhang L, et al.: Effects of long-term low-dose cadmium exposure on genomic DNA methylation in human embryo lung fibroblast cells. Toxicology 2008, 244:49-55.
  • [45]Poirier LA, Vlasova TI: The prospective role of abnormal methyl metabolism in cadmium toxicity. Environ Health Perspect 2002, 110(Suppl 5):793-795.
  • [46]Yuan D, Ye S, Pan Y, Bao Y, Chen H, Shao C: Long-term cadmium exposure leads to the enhancement of lymphocyte proliferation via down-regulating p16 by DNA hypermethylation. Mutat Res 2013, 757:125-131.
  • [47]Inglot P, Lewinska A, Potocki L, Oklejewicz B, Tabecka-Lonczynska A, Koziorowski M, et al.: Cadmium-induced changes in genomic DNA-methylation status increase aneuploidy events in a pig Robertsonian translocation model. Mutat Res 2012, 747:182-189.
  • [48]Castillo P, Ibanez F, Guajardo A, Llanos MN, Ronco AM: Impact of cadmium exposure during pregnancy on hepatic glucocorticoid receptor methylation and expression in rat fetus. PLoS One 2012, 7:e44139.
  • [49]Wang B, Li Y, Tan Y, Miao X, Liu XD, Shao C, et al.: Low-dose Cd induces hepatic gene hypermethylation, along with the persistent reduction of cell death and increase of cell proliferation in rats and mice. PLoS One 2012, 7:e33853.
  • [50]Zhou ZH, Lei YX, Wang CX: Analysis of aberrant methylation in DNA repair genes during malignant transformation of human bronchial epithelial cells induced by cadmium. Toxicol Sci 2012, 125:412-417.
  • [51]Fujishiro H, Okugaki S, Yasumitsu S, Enomoto S, Himeno S: Involvement of DNA hypermethylation in down-regulation of the zinc transporter ZIP8 in cadmium-resistant metallothionein-null cells. Toxicol Appl Pharmacol 2009, 241:195-201.
  • [52]Majumder S, Ghoshal K, Li Z, Bo Y, Jacob ST: Silencing of metallothionein-I gene in mouse lymphosarcoma cells by methylation. Oncogene 1999, 18:6287-6295.
  • [53]Sanders AP, Smeester L, Rojas D, Debussycher T, Wu MC, Wright FA, et al.: Cadmium exposure and the epigenome: exposure-associated patterns of DNA methylation in leukocytes from mother-baby pairs. Epigenetics 2014, 9:212-221.
  • [54]Hossain MB, Vahter M, Concha G, Broberg K: Low-level environmental cadmium exposure is associated with DNA hypomethylation in Argentinean women. Environ Health Perspect 2012, 120:879-884.
  • [55]Zhang C, Liang Y, Lei L, Zhu G, Chen X, Jin T, et al.: Hypermethylations of RASAL1 and KLOTHO is associated with renal dysfunction in a Chinese population environmentally exposed to cadmium. Toxicol Appl Pharmacol 2013, 271:78-85.
  • [56]Smith DR, Flegal AR: Lead in the biosphere: recent trends. Ambio 1995, 24:21-23.
  • [57]Muntner P, Menke A, DeSalvo KB, Rabito FA, Batuman V: Continued decline in blood lead levels among adults in the United States: the National Health and Nutrition Examination Surveys. Arch Intern Med 2005, 165:2155-2161.
  • [58]Hense HW, Filipiak B, Novak L, Stoeppler M: Nonoccupational determinants of blood lead concentrations in a general population. Int J Epidemiol 1992, 21:753-762.
  • [59]Apostolou A, Garcia-Esquinas E, Fadrowski JJ, McLain P, Weaver VM, Navas-Acien A: Secondhand tobacco smoke: a source of lead exposure in US children and adolescents. Am J Public Health 2012, 102:714-722.
  • [60]ATSDR. Toxicological profile for lead. 2007. http://www.atsdr.cdc.gov/toxprofiles/tp.asp?id=96&tid=22. Accessed 14 Jan 2015.
  • [61]Hu H, Shih R, Rothenberg S, Schwartz BS: The epidemiology of lead toxicity in adults: measuring dose and consideration of other methodologic issues. Environ Health Perspect 2007, 115:455-462.
  • [62]Menke A, Muntner P, Batuman V, Silbergeld EK, Guallar E: Blood lead below 0.48 micromol/L (10 microg/dL) and mortality among US adults. Circulation 2006, 114:1388-1394.
  • [63]Navas-Acien A, Guallar E, Silbergeld EK, Rothenberg SJ: Lead exposure and cardiovascular disease–a systematic review. Environ Health Perspect 2007, 115:472-482.
  • [64]Bihaqi SW, Huang H, Wu J, Zawia NH: Infant exposure to lead (Pb) and epigenetic modifications in the aging primate brain: implications for Alzheimer's disease. J Alzheimers Dis 2011, 27:819-833.
  • [65]Bihaqi SW, Zawia NH: Alzheimer's disease biomarkers and epigenetic intermediates following exposure to Pb in vitro. Curr Alzheimer Res 2012, 9:555-562.
  • [66]Dosunmu R, Alashwal H, Zawia NH: Genome-wide expression and methylation profiling in the aged rodent brain due to early-life Pb exposure and its relevance to aging. Mech Ageing Dev 2012, 133:435-443.
  • [67]Senut MC, Sen A, Cingolani P, Shaik A, Land SJ, Ruden DM: Lead exposure disrupts global DNA methylation in human embryonic stem cells and alters their neuronal differentiation. Toxicol Sci 2014, 139:142-161.
  • [68]Wright RO, Schwartz J, Wright RJ, Bollati V, Tarantini L, Park SK, et al.: Biomarkers of lead exposure and DNA methylation within retrotransposons. Environ Health Perspect 2010, 118:790-795.
  • [69]Li C, Yang X, Xu M, Zhang J, Sun N: Epigenetic marker (LINE-1 promoter) methylation level was associated with occupational lead exposure. Clin Toxicol (Phila) 2013, 51:225-229.
  • [70]ATSDR. Toxicologiccal profile for mercury. 1999. http://www.atsdr.cdc.gov/toxprofiles/tp.asp?id=115&tid=24. Accessed 14 Jan 2015.
  • [71]Karagas MR, Choi AL, Oken E, Horvat M, Schoeny R, Kamai E, et al.: Evidence on the human health effects of low-level methylmercury exposure. Environ Health Perspect 2012, 120:799-806.
  • [72]Hong YS, Kim YM, Lee KE: Methylmercury exposure and health effects. J Prev Med Public Health 2012, 45:353-363.
  • [73]Park JD, Zheng W: Human exposure and health effects of inorganic and elemental mercury. J Prev Med Public Health 2012, 45:344-352.
  • [74]Roman HA, Walsh TL, Coull BA, Dewailly E, Guallar E, Hattis D, et al.: Evaluation of the cardiovascular effects of methylmercury exposures: current evidence supports development of a dose-response function for regulatory benefits analysis. Environ Health Perspect 2011, 119:607-614.
  • [75]Bose R, Onishchenko N, Edoff K, Janson Lang AM, Ceccatelli S: Inherited effects of low-dose exposure to methylmercury in neural stem cells. Toxicol Sci 2012, 130:383-390.
  • [76]Arai Y, Ohgane J, Yagi S, Ito R, Iwasaki Y, Saito K, et al.: Epigenetic assessment of environmental chemicals detected in maternal peripheral and cord blood samples. J Reprod Dev 2011, 57:507-517.
  • [77]Moulin JJ, Wild P, Romazini S, Lasfargues G, Peltier A, Bozec C, et al.: Lung cancer risk in hard-metal workers. Am J Epidemiol 1998, 148:241-248.
  • [78]ATSDR. Toxicological profile for Tungsten. 2005. http://www.atsdr.cdc.gov/toxprofiles/tp.asp?id=806&tid=157. Accessed 14 Jan 2015.
  • [79]Agarwal S, Zaman T, Tuzcu EM, Kapadia SR: Heavy metals and cardiovascular disease: results from the National Health and Nutrition Examination Survey (NHANES) 1999-2006. Angiol. 2011;62:422-429.
  • [80]Klein CB, Costa M. Nickel. In Nordberg GF, Fowler BF, Nordberg M and Friberg L editors. Handbook on the toxicology of metals. Amsterdam: Elsevier; 2007: 743-758.
  • [81]Lee YW, Klein CB, Kargacin B, Salnikow K, Kitahara J, Dowjat K, et al.: Carcinogenic nickel silences gene expression by chromatin condensation and DNA methylation: a new model for epigenetic carcinogens. Mol Cell Biol 1995, 15:2547-2557.
  • [82]Lee YW, Broday L, Costa M: Effects of nickel on DNA methyltransferase activity and genomic DNA methylation levels. Mutat Res 1998, 415:213-218.
  • [83]Chervona Y, Arita A, Costa M: Carcinogenic metals and the epigenome: understanding the effect of nickel, arsenic, and chromium. Metallomics 2012, 4:619-627.
  • [84]Yan Y, Kluz T, Zhang P, Chen HB, Costa M: Analysis of specific lysine histone H3 and H4 acetylation and methylation status in clones of cells with a gene silenced by nickel exposure. Toxicol Appl Pharmacol 2003, 190:272-277.
  • [85]Goodrich JM, Basu N, Franzblau A, Dolinoy DC: Mercury biomarkers and DNA methylation among Michigan dental professionals. Environ Mol Mutagen 2013, 54:195-203.
  • [86]Selin NE, Sunderland EM, Knightes CD, Mason RP: Sources of mercury exposure for U.S. seafood consumers: implications for policy. Environ Health Perspect 2010, 118:137-143.
  • [87]United States Environmental Protection Agency. Persistent organic pollutants: A global issue, a global response. 2014. http://www2.epa.gov/international-cooperation/persistent-organic-pollutants-global-issue-global-response. Accessed 14 Jan 2015.
  • [88]Haffner D, Schecter A: Persistent organic pollutants (POPs): a primer for practicing clinicians. Curr Envir Health Rpt 2014, 1:123-131.
  • [89]Schecter A, Pavuk M, Papke O, Ryan JJ, Birnbaum L, Rosen R: Polybrominated diphenyl ethers (PBDEs) in U.S. mothers' milk. Environ Health Perspect 2003, 111:1723-1729.
  • [90]Kuo C, Moon K, Thayer KA, Navas-Acien A: Environmental chemicals and type 2 diabetes: an updated systematic review of the epidemiologic evidence. Curr Diab Rep 2013, 13:831-849.
  • [91]Steenland K, Fletcher T, Savitz DA: Epidemiologic evidence on the health effects of perfluorooctanoic acid (PFOA). Environ Health Perspect 2010, 118:1100-1108.
  • [92]ATSDR. Toxicologiccal Profile for Phenol. 2008. http://www.atsdr.cdc.gov/ToxProfiles/tp.asp?id=148&tid=27. Accessed 14 Jan 2015.
  • [93]Shutoh Y, Takeda M, Ohtsuka R, Haishima A, Yamaguchi S, Fujie H, et al.: Low dose effects of dichlorodiphenyltrichloroethane (DDT) on gene transcription and DNA methylation in the hypothalamus of young male rats: implication of hormesis-like effects. J Toxicol Sci 2009, 34:469-482.
  • [94]Desaulniers D, Xiao GH, Lian H, Feng YL, Zhu J, Nakai J, et al.: Effects of mixtures of polychlorinated biphenyls, methylmercury, and organochlorine pesticides on hepatic DNA methylation in prepubertal female Sprague-Dawley rats. Int J Toxicol 2009, 28:294-307.
  • [95]Tian M, Peng S, Martin FL, Zhang J, Liu L, Wang Z, et al.: Perfluorooctanoic acid induces gene promoter hypermethylation of glutathione-S-transferase Pi in human liver L02 cells. Toxicology 2012, 296:48-55.
  • [96]Susiarjo M, Sasson I, Mesaros C, Bartolomei MS: Bisphenol a exposure disrupts genomic imprinting in the mouse. PLoS Genet 2013, 9:e1003401.
  • [97]Dolinoy DC, Huang D, Jirtle RL: Maternal nutrient supplementation counteracts bisphenol A-induced DNA hypomethylation in early development. Proc Natl Acad Sci U S A 2007, 104:13056-13061.
  • [98]Kim KY, Kim DS, Lee SK, Lee IK, Kang JH, Chang YS, et al.: Association of low-dose exposure to persistent organic pollutants with global DNA hypomethylation in healthy Koreans. Environ Health Perspect 2010, 118:370-374.
  • [99]Lind L, Penell J, Luttropp K, Nordfors L, Syvanen AC, Axelsson T, et al.: Global DNA hypermethylation is associated with high serum levels of persistent organic pollutants in an elderly population. Environ Int 2013, 59:456-461.
  • [100]Rusiecki JA, Baccarelli A, Bollati V, Tarantini L, Moore LE, Bonefeld-Jorgensen EC: Global DNA hypomethylation is associated with high serum-persistent organic pollutants in Greenlandic Inuit. Environ Health Perspect 2008, 116:1547-1552.
  • [101]Watkins DJ, Wellenius GA, Butler RA, Bartell SM, Fletcher T, Kelsey KT: Associations between serum perfluoroalkyl acids and LINE-1 DNA methylation. Environ Int 2014, 63:71-76.
  • [102]Schisterman EF, Whitcomb BW, Louis GM, Louis TA: Lipid adjustment in the analysis of environmental contaminants and human health risks. Environ Health Perspect 2005, 113:853-857.
  • [103]ATSDR. Toxicological profile for polycyclic aromatic hydrocarbons. 1995. http://www.atsdr.cdc.gov/toxprofiles/tp.asp?id=122&tid=25. Accessed 14 Jan 2015.
  • [104]Strickland P, Kang D, Sithisarankul P: Polycyclic aromatic hydrocarbon metabolites in urine as biomarkers of exposure and effect. Environ Health Perspect 1996, 104(Suppl 5):927-932.
  • [105]Talaska G, Underwood P, Maier A, Lewtas J, Rothman N, Jaeger M: Polycyclic aromatic hydrocarbons (PAHs), nitro-PAHs and related environmental compounds: biological markers of exposure and effects. Environ Health Perspect 1996, 104(Suppl 5):901-906.
  • [106]Diggs DL, Huderson AC, Harris KL, Myers JN, Banks LD, Rekhadevi PV, et al.: Polycyclic aromatic hydrocarbons and digestive tract cancers: a perspective. J Environ Sci Health C Environ Carcinog Ecotoxicol Rev 2011, 29:324-357.
  • [107]Whitehead TP, Metayer C, Petreas M, Does M, Buffler PA, Rappaport SM: Polycyclic aromatic hydrocarbons in residential dust: sources of variability. Environ Health Perspect 2013, 121:543-550.
  • [108]Shiraiwa M, Selzle K, Poschl U: Hazardous components and health effects of atmospheric aerosol particles: reactive oxygen species, soot, polycyclic aromatic compounds and allergenic proteins. Free Radic Res 2012, 46:927-939.
  • [109]Sadikovic B, Rodenhiser DI: Benzopyrene exposure disrupts DNA methylation and growth dynamics in breast cancer cells. Toxicol Appl Pharmacol 2006, 216:458-468.
  • [110]Wilson VL, Jones PA: Inhibition of DNA methylation by chemical carcinogens in vitro. Cell 1983, 32:239-246.
  • [111]Fang X, Thornton C, Scheffler BE, Willett KL: Benzo[a]pyrene decreases global and gene specific DNA methylation during zebrafish development. Environ Toxicol Pharmacol 2013, 36:40-50.
  • [112]Drahovsky D, Morris NR: Mammalian DNA methylase: binding and methylation site selection. Hoppe Seylers Z Physiol Chem 1972, 353:700-701.
  • [113]Subach OM, Maltseva DV, Shastry A, Kolbanovskiy A, Klimasauskas S, Geacintov NE, et al.: The stereochemistry of benzo[a]pyrene-2'-deoxyguanosine adducts affects DNA methylation by SssI and HhaI DNA methyltransferases. Febs j 2007, 274:2121-2134.
  • [114]Chen JX, Zheng Y, West M, Tang MS: Carcinogens preferentially bind at methylated CpG in the p53 mutational hot spots. Cancer Res 1998, 58:2070-2075.
  • [115]Denissenko MF, Chen JX, Tang MS, Pfeifer GP: Cytosine methylation determines hot spots of DNA damage in the human P53 gene. Proc Natl Acad Sci U S A 1997, 94:3893-3898.
  • [116]Tretyakova N, Matter B, Jones R, Shallop A: Formation of benzo[a]pyrene diol epoxide-DNA adducts at specific guanines within K-ras and p53 gene sequences: stable isotope-labeling mass spectrometry approach. Biochemistry 2002, 41:9535-9544.
  • [117]Weisenberger DJ, Romano LJ: Cytosine methylation in a CpG sequence leads to enhanced reactivity with Benzo[a]pyrene diol epoxide that correlates with a conformational change. J Biol Chem 1999, 274:23948-23955.
  • [118]Alegria-Torres JA, Barretta F, Batres-Esquivel LE, Carrizales-Yanez L, Perez-Maldonado IN, Baccarelli A, et al.: Epigenetic markers of exposure to polycyclic aromatic hydrocarbons in Mexican brickmakers: a pilot study. Chemosphere 2013, 91:475-480.
  • [119]Pavanello S, Bollati V, Pesatori AC, Kapka L, Bolognesi C, Bertazzi PA, et al.: Global and gene-specific promoter methylation changes are related to anti-B[a]PDE-DNA adduct levels and influence micronuclei levels in polycyclic aromatic hydrocarbon-exposed individuals. Int J Cancer 2009, 125:1692-1697.
  • [120]Yang P, Ma J, Zhang B, Duan H, He Z, Zeng J, et al.: CpG site-specific hypermethylation of p16INK4alpha in peripheral blood lymphocytes of PAH-exposed workers. Cancer Epidemiol Biomarkers Prev 2012, 21:182-190.
  • [121]Yang AS, Estecio MR, Doshi K, Kondo Y, Tajara EH, Issa JP: A simple method for estimating global DNA methylation using bisulfite PCR of repetitive DNA elements. Nucleic Acids Res 2004, 32:e38.
  • [122]Li TH, Schmid CW: Differential stress induction of individual Alu loci: implications for transcription and retrotransposition. Gene 2001, 276:135-141.
  • [123]Jaffe AE, Irizarry RA: Accounting for cellular heterogeneity is critical in epigenome-wide association studies. Genome Biol 2014, 15:R31.
  • [124]Shah S, McRae AF, Marioni RE, Harris SE, Gibson J, Henders AK, et al.: Genetic and environmental exposures constrain epigenetic drift over the human life course. Genome Res 2014, 24:1725-33.
  • [125]Kerkel K, Spadola A, Yuan E, Kosek J, Jiang L, Hod E, et al.: Genomic surveys by methylation-sensitive SNP analysis identify sequence-dependent allele-specific DNA methylation. Nat Genet 2008, 40:904-908.
  • [126]Houseman EA, Accomando WP, Koestler DC, Christensen BC, Marsit CJ, Nelson HH, et al.: DNA methylation arrays as surrogate measures of cell mixture distribution. BMC Bioinformatics 2012, 13:86.
  • [127]Leek JT, Scharpf RB, Bravo HC, Simcha D, Langmead B, Johnson WE, Geman D, Baggerly K, Irizarry RA: Tackling the widespread and critical impact of batch effects in high-throughput data. Nat Rev Genet. 2010;11:733-739.
  • [128]Aryee MJ, Jaffe AE, Corrada-Bravo H, Ladd-Acosta C, Feinberg AP, Hansen KD, et al.: Minfi: a flexible and comprehensive bioconductor package for the analysis of Infinium DNA methylation microarrays. Bioinformatics 2014, 30:1363-1369.
  • [129]Bolstad BM, Irizarry RA, Astrand M, Speed TP: A comparison of normalization methods for high density oligonucleotide array data based on variance and bias. Bioinformatics 2003, 19:185-193.
  • [130]Rojas D, Rager JE, Smeester L, Bailey KA, Drobná Z, Rubio-Andrade M, et al.: Prenatal arsenic exposure and the epigenome: identifying sites of 5-methylcytosine alterations that predict functional changes in gene expression in newborn cord blood and subsequent birth outcomes. Toxicol Sci. 2015, 143(1):97-106.
  • [131]Huang Y, Pastor WA, Shen Y, Tahiliani M, Liu DR, Rao A: The behaviour of 5-hydroxymethylcytosine in bisulfite sequencing. PLoS One 2010, 5:e8888.
  • [132]Booth MJ, Branco MR, Ficz G, Oxley D, Krueger F, Reik W, et al.: Quantitative sequencing of 5-methylcytosine and 5-hydroxymethylcytosine at single-base resolution. Science 2012, 336:934-937.
  • [133]Stewart SK, Morris TJ, Guilhamon P, Bulstrode H, Bachman M, Balasubramanian S, Beck S: oxBS-450K: A method for analysing hydroxymethylation using 450K BeadChips. Methods 2014. doi:10.1016/j.ymeth.2014.08.009.
  • [134]Nazor KL, Peterson SE, Boland MJ, Bibikova M, Klotzle B, Yu M, et al.: Application of a low cost array-based technique - TAB-Array - for quantifying and mapping both 5mC and 5hmC at single base resolution in human pluripotent stem cells. Genomics 2014, 104:358-67.
  • [135]Dao T, Cheng RYS, Revelo MP, Mitzner W, Tang WT: Hydroxymethylation as a novel environmental biosensor. Curr Environ Health Rep 2014, 1:1-10.
  • [136]Cheng TF, Choudhuri S, Muldoon-Jacobs K: Epigenetic targets of some toxicologically relevant metals: a review of the literature. J Appl Toxicol 2012, 32:643-653.
  文献评价指标  
  下载次数:12次 浏览次数:19次