期刊论文详细信息
Clinical Epigenetics
Imprinting disorders: a group of congenital disorders with overlapping patterns of molecular changes affecting imprinted loci
Irène Netchine5  Agnès Linglart6  Andrea Riccio7  Karen Grønskov3  Deborah J. G. Mackay8  David Monk2  Zeynep Tümer3  I. Karen Temple8  Eamonn R. Maher9  Guiomar Perez de Nanclares4  Thomas Eggermann1 
[1] 3APHP, Pediatric Endocrinology, Armand Trousseau Hospital, Paris, France;Imprinting and Cancer Group, Cancer Epigenetic and Biology Program (PEBC), Institut d’Investigació Biomedica de Bellvitge (IDIBELL), Hospital Duran i Reynals, Barcelona, Spain;Clinical Genetic Clinic, Kennedy Center, Rigshospitalet, Copenhagen University Hospital, Glostrup, Denmark;Molecular (Epi)Genetics Laboratory, BioAraba National Health Institute, Hospital Universitario Araba, Vitoria-Gasteiz, Spain;INSERM, UMR_S 938, CDR Saint-Antoine, Paris F-75012, France;Institute of Genetics and Biophysics—ABT, CNR, Napoli, Italy;DiSTABiF, Seconda Università degli Studi di Napoli, Caserta, Italy;Wessex Clinical Genetics Service, Princess Anne Hospital, Coxford Road, Southampton, UK;Department of Medical Genetics, University of Cambridge and NIHR Cambridge Biomedical Research Centre, Cambridge, UK
关键词: Uniparental disomy;    Epimutation;    Imprinted genes;    Imprinting disorders;   
Others  :  1234339
DOI  :  10.1186/s13148-015-0143-8
 received in 2015-07-14, accepted in 2015-09-29,  发布年份 2015
PDF
【 摘 要 】

Congenital imprinting disorders (IDs) are characterised by molecular changes affecting imprinted chromosomal regions and genes, i.e. genes that are expressed in a parent-of-origin specific manner. Recent years have seen a great expansion in the range of alterations in regulation, dosage or DNA sequence shown to disturb imprinted gene expression, and the correspondingly broad range of resultant clinical syndromes. At the same time, however, it has become clear that this diversity of IDs has common underlying principles, not only in shared molecular mechanisms, but also in interrelated clinical impacts upon growth, development and metabolism. Thus, detailed and systematic analysis of IDs can not only identify unifying principles of molecular epigenetics in health and disease, but also support personalisation of diagnosis and management for individual patients and families.

【 授权许可】

   
2015 Eggermann et al.

【 预 览 】
附件列表
Files Size Format View
20151129031054157.pdf 2815KB PDF download
Fig. 9. 48KB Image download
Fig. 8. 50KB Image download
Fig. 7. 42KB Image download
Fig. 6. 34KB Image download
Fig. 5. 36KB Image download
Fig. 4. 49KB Image download
Fig. 3. 43KB Image download
Fig. 2. 54KB Image download
Fig. 1. 35KB Image download
【 图 表 】

Fig. 1.

Fig. 2.

Fig. 3.

Fig. 4.

Fig. 5.

Fig. 6.

Fig. 7.

Fig. 8.

Fig. 9.

【 参考文献 】
  • [1]Hanna CW, Kelsey G: The specification of imprints in mammals. Heredity (Edinb) 2014, 113:176-83.
  • [2]Kalish JM, Conlin LK, Bhatti TR, Dubbs HA, Harris MC, Izumi K, et al.: Clinical features of three girls with mosaic genome-wide paternal uniparental isodisomy. Am J Med Genet A 2013, 161:1929-39.
  • [3]Eggermann T, Soellner L, Buiting K, Kotzot D: Mosaicism and uniparental disomy in prenatal diagnosis. Trends Mol Med 2015, 21:77-87.
  • [4]Shaffer LG, Agan N, Goldberg JD, Ledbetter DH, Longshore JW, Cassidy SB: American college of medical genetics statement on diagnostic testing for uniparental disomy. Genet Med 2001, 3:206-211.
  • [5]Abi Habib W, Azzi S, Brioude F, Steunou V, Thibaud N, Das Neves C, et al.: Extensive investigation of the IGF2/H19 imprinting control region reveals novel OCT4/SOX2 binding site defects associated with specific methylation patterns in Beckwith-Wiedemann syndrome. Hum Mol Genet 2014, 23:5763-73.
  • [6]De Crescenzo A, Sparago A, Cerrato F, Palumbo O, Carella M, Miceli M, et al.: Paternal deletion of the 11p15.5 centromeric-imprinting control region is associated with alteration of imprinted gene expression and recurrent severe intrauterine growth restriction. J Med Genet 2013, 50:99-103.
  • [7]Cerrato F, De Crescenzo A, Riccio A: Looking for CDKN1C enhancers. Eur J Hum Genet 2014, 22:442-3.
  • [8]Linglart A, Maupetit-Méhouas S, Silve C: GNAS -related loss-of-function disorders and the role of imprinting. Horm Res Paediatr 2013, 29:119-129.
  • [9]Brioude F, Oliver-Petit I, Blaise A, Praz F, Rossignol S, Le Jule M, et al.: CDKN1C mutation affecting the PCNA-binding domain as a cause of familial Russell Silver syndrome. J Med Genet 2013, 50:823-30.
  • [10]Grønskov K, Poole RL, Hahnemann JM, Thomson J, Tümer Z, Brøndum-Nielsen K, et al.: Deletions and rearrangements of the H19/IGF2 enhancer region in patients with Silver-Russell syndrome and growth retardation. J Med Genet 2011, 48:308-11.
  • [11]Kagami M, O’Sullivan MJ, Green AJ, Watabe Y, Arisaka O, Masawa N, et al.: The IG-DMR and the MEG3-DMR at human chromosome 14q32.2: hierarchical interaction and distinct functional properties as imprinting control centers. PLoS Genet 2010., 6Article ID e1000992
  • [12]Horsthemke B: Epimutations in human disease. Curr Top Microbiol Immunol 2006, 310:45-59.
  • [13]Uyar A, Seli E: The impact of assisted reproductive technologies on genomic imprinting and imprinting disorders. Curr Opin Obstet Gynecol 2014, 26:210-21.
  • [14]Beygo J, Citro V, Sparago A, De Crescenzo A, Cerrato F, Heitmann M, et al.: The molecular function and clinical phenotype of partial deletions of the IGF2/H19 imprinting control region depends on the spatial arrangement of the remaining CTCF-binding sites. Hum Mol Genet 2013, 22:544-57.
  • [15]Bestor TH: Imprinting errors and developmental asymmetry. Philos Trans R Soc Lond B Biol Sci 2003, 358:1411-5.
  • [16]Temple IK, Shield JP: 6q24 transient neonatal diabetes. Rev Endocr Metab Disord 2010, 11:199-204.
  • [17]Mackay D, Bens S, Perez de Nanclares G, Siebert R, Temple IK: Clinical utility gene card for: Transient Neonatal Diabetes Mellitus, 6q24-related. Eur J Hum Genet 2014.
  • [18]Docherty LE, Kabwama S, Lehmann A, Hawke E, Harrison L, Flanagan SE, et al.: Clinical presentation of 6q24 transient neonatal diabetes mellitus (6q24 TNDM) and genotype-phenotype correlation in an international cohort of patients. Diabetologia 2013, 56:758-62.
  • [19]Boonen SE, Mackay DJ, Hahnemann JM, Docherty L, Grønskov K, Lehmann A, et al.: Transient neonatal diabetes, ZFP57 and hypomethylation of multiple imprinted loci: a detailed follow-up. Diabetes Care 2013, 36:505-12.
  • [20]Gardner RJ, Mackay DJG, Mungall AJ, Polychronakos C, Siebert R, Shield JP, et al.: An imprinted locus associated with transient neonatal diabetes mellitus. Hum Mol Genet 2000, 9:589-96.
  • [21]Takenouchi T, Awazu M, Eggermann T, Kosaki K: Adult phenotype of russell-silver syndrome: a molecular support for Barker-Brenner’s theory. Congenit Anom 2015.
  • [22]Azzi S, Blaise A, Steunou V, Harbison MD, Salem J, Brioude F, et al.: Complex tissue-specific epigenotypes in Russell-Silver Syndrome associated with 11p15 ICR1 hypomethylation. Hum Mutat 2014, 35:1211-20.
  • [23]Azzi S, Salem J, Thibaud N, Chantot-Bastaraud S, Lieber E, Netchine I, Harbison MD: A prospective study validating a clinical scoring system and demonstrating phenotypical-genotypical correlations in Silver-Russell syndrome. J Med Genet 2015, 52(7):446-53.
  • [24]Abu-Amero S, Monk D, Frost J, Preece M, Stanier P, Moore GE: The genetic aetiology of Silver-Russell syndrome. J Med Genet 2008, 45:193-9.
  • [25]Netchine I, Rossignol S, Dufourg MN, Azzi S, Rousseau A, Perin L, et al.: 11p15 imprinting center region 1 loss of methylation is a common and specific cause of typical Russell-Silver syndrome: clinical scoring system and epigenetic-phenotypic correlations. J Clin Endocrinol Metab 2007, 92:3148-54.
  • [26]Bruce S, Hannula-Jouppi K, Puoskari M, Fransson I, Simola KO, Lipsanen-Nyman M, Kere J: Submicroscopic genomic alterations in Silver-Russell syndrome and Silver-Russell-like patients. J Med Genet 2010, 47:816-22.
  • [27]Spengler S, Begemann M, Ortiz Brüchle N, Baudis M, Denecke B, Kroisel PM, et al.: Molecular karyotyping as a relevant diagnostic tool in children with growth retardation with Silver-Russell features. J Pediatr 2012, 161:933-42.
  • [28]Gicquel C, Rossignol S, Cabrol S, Houang M, Steunou V, Barbu V, et al.: Epimutation of the telomeric imprinting center region on chromosome 11p15 in Silver-Russell syndrome. Nat Genet 2005, 37:1003-7.
  • [29]Eggermann T, Spengler S, Begemann M, Binder G, Buiting K, Albrecht B, Spranger S: Deletion of the paternal allele of the imprinted MEST/PEG1 region in a patient with Silver-Russell syndrome features. Clin Genet 2012, 81:298-300.
  • [30]Begemann M, Zirn B, Santen G, Wirthgen E, Soellner L, Büttel HM, Schweizer R, van Workum W, Binder G, Eggermann T. Paternally inherited IGF2 mutation and growth restriction. N Engl J Med. 2015. [Epub ahead of print].
  • [31]Cooper WN, Luharia A, Evans GA, Raza H, Haire AC, Grundy R, et al.: Molecular subtypes and phenotypic expression of Beckwith-Wiedemann syndrome. Eur J Hum Genet 2005, 13:1025-32.
  • [32]Choufani S, Shuman C, Weksberg R: Beckwith-Wiedemann syndrome. Am J Med Genet 2010, 154C:343-54.
  • [33]Brioude F, Lacoste A, Netchine I, Vazquez MP, Auber F, Audry G, et al.: Beckwith-Wiedemann syndrome: growth pattern and tumor risk according to molecular mechanism, and guidelines for tumor surveillance. Horm Res Paediatr 2013, 80:457-65.
  • [34]Shuman C, Beckwith JB, Smith AC, et al. Beckwith-Wiedemann Syndrome. 2000 Mar 3 [Updated 2010 Dec 14]. In: Pagon RA, Adam MP, Ardinger HH, et al., editors. GeneReviews® [Internet]. Seattle (WA): University of Washington, Seattle; 1993-2015. Available from:. http://www.ncbi.nlm.nih.gov/books/NBK1394/ webcite
  • [35]Sparago A, Cerrato F, Vernucci M, Ferrero GB, Silengo MC, Riccio A: Microdeletions in the human H19 DMR result in loss of IGF2 imprinting and Beckwith-Wiedemann syndrome. Nat Genet 2004, 36:958-60.
  • [36]Demars J, Shmela ME, Rossignol S, Okabe J, Netchine I, Azzi S, et al.: Analysis of the IGF2/H19 imprinting control region uncovers new genetic defects, including mutations of OCT-binding sequences, in patients with 11p15 fetal growth disorders. Hum Mol Genet 2010, 19:803-14.
  • [37]Brioude F, Netchine I, Praz F, Jule ML, Calmel C, Lacombe D, et al.: Mutations of the imprinted CDKN1C gene as a cause of the overgrowth Beckwith Wiedemann syndrome: clinical spectrum and functional characterization. Hum Mutat 2015.
  • [38]Tee L, Lim DH, Dias RP, Baudement MO, Slater AA, Kirby G, et al.: Epimutation profiling in Beckwith-Wiedemann syndrome: relationship with assisted reproductive technology. Clin Epigenetics 2013, 5:23. BioMed Central Full Text
  • [39]Ibrahim A, Kirby G, Hardy C, Dias RP, Tee L, Lim D, et al.: Methylation analysis and diagnostics of Beckwith-Wiedemann syndrome in 1,000 subjects. Clin Epigenetics 2014, 6:11. BioMed Central Full Text
  • [40]Mussa A, Russo S, De Crescenzo A, Freschi A, Calzari L, Maitz S, et al.: (Epi)genotype-phenotype correlations in Beckwith-Wiedemann syndrome. Eur J Hum Genet 2015.
  • [41]Temple IK, Cockwell A, Hassold T, Pettay D, Jacobs P: Maternal uniparental disomy for chromosome 14. J Med Genet 1991, 28:511-4.
  • [42]Kagami M, Sekita Y, Nishimura G, Irie M, Kato F, Okada M, et al.: Deletions and epimutations affecting the human chromosome 14q32.2 imprinted region in individuals with paternal and maternal upd(14)-like phenotypes. Nat Genet 2008, 40:237-242.
  • [43]Ioannides Y, Lokulo-Sodipe K, Mackay DJ, Davies JH, Temple IK: Temple syndrome: improving the recognition of an underdiagnosed chromosome 14 imprinting disorder: an analysis of 51 published cases. J Med Genet 2014, 51:495-501.
  • [44]Eggermann T, Netchine I, Temple IK, Tümer Z, Monk D, Mackay D, et al.: Congenital imprinting disorders: EUCID.net - a network to decipher their aetiology and to improve the diagnostic and clinical care. Clin Epigenetics 2015, 7:23. BioMed Central Full Text
  • [45]Kagami M, Kurosawa K, Miyazaki O, Ishino F, Matsuoka K, Ogata T: Comprehensive clinical studies in 34 patients with molecularly defined UPD(14)pat and related conditions (Kagami-Ogata syndrome). Eur J Hum Genet 2015.
  • [46]Beygo J, Elbracht M, de Groot K, Begemann M, Kanber D, Platzer K, et al.: Novel deletions affecting the MEG3-DMR provide further evidence for a hierarchical regulation of imprinting in 14q32. Eur J Hum Genet 2015, 23:180-188.
  • [47]Tan WH, Bacino CA, Skinner SA, Anselm I, Barbieri-Welge R, Bauer-Carlin A, et al.: Angelman syndrome: mutations influence features in early childhood. Am J Med Genet A 2011, 155:81-90.
  • [48]Buiting K, Barnicoat A, Lich C, Pembrey M, Malcolm S, Horsthemke B: Disruption of the bipartite imprinting center in a family with Angelman syndrome. Am J Hum Genet 2001, 68:1290-4.
  • [49]Buiting K, Gross S, Lich C, Gillessen-Kaesbach G, el-Maarri O, Horsthemke B: Epimutations in Prader-Willi and Angelman syndromes: a molecular study of 136 patients with an imprinting defect. Am J Hum Genet 2003, 72:571-7.
  • [50]Rougeulle C, Glatt H, Lalande M: The Angelman syndrome candidate gene, UBE3A/E6-AP, is imprinted in brain. Nat Genet 1997, 17:14-5.
  • [51]Vu TH, Hoffman AR: Imprinting of the Angelman syndrome gene, UBE3A, is restricted to brain. Nat Genet 1997, 17:12-3.
  • [52]Holm VA, Cassidy SB, Butler MG, Hanchett JM, Greenswag LR, Whitman BY, Greenberg F: Prader-Willi syndrome: consensus diagnostic criteria. Pediatrics 1993, 91:398-402.
  • [53]Gunay-Aygun M, Schwartz S, Heeger S, O’Riordan MA, Cassidy SB: The changing purpose of Prader-Willi syndrome clinical diagnostic criteria and proposed revised criteria. Pediatrics 2001., 108Article ID E92
  • [54]Buiting K, Saitoh S, Gross S, Dittrich B, Schwartz S, Nicholls RD, Horsthemke B: Inherited microdeletions in the Angelman and Prader-Willi syndromes define an imprinting centre on human chromosome 15. Nat Genet 1995, 9:395-400.
  • [55]Sahoo T, del Gaudio D, German JR, Shinawi M, Peters SU, Person RE, et al.: Prader-Willi phenotype caused by paternal deficiency for the HBII-85 C/D box small nucleolar RNA cluster. Nat Genet 2008, 40:719-21.
  • [56]de Smith AJ, Purmann C, Walters RG, Ellis RJ, Holder SE, Van Haelst MM, et al.: A deletion of the HBII-85 class of small nucleolar RNAs (snoRNAs) is associated with hyperphagia, obesity and hypogonadism. Hum Mol Genet 2009, 18:3257-65.
  • [57]Abreu AP, Dauber A, Macedo DB, Noel SD, Brito VN, Gill JC, et al.: Central precocious puberty caused by mutations in the imprinted gene MKRN3. N Engl J Med 2013, 368:2467-75.
  • [58]de Vries L, Gat-Yablonski G, Dror N, Singer A, Phillip M: A novel MKRN3 missense mutation causing familial precocious puberty. Hum Reprod 2014, 29:2838-43.
  • [59]Schreiner F, Gohlke B, Hamm M, Korsch E, Woelfle J: MKRN3 mutations in familial central precocious puberty. Horm Res Paediatr 2014, 82:122-6.
  • [60]Settas N, Dacou-Voutetakis C, Karantza M, Kanaka-Gantenbein C, Chrousos GP, Voutetakis A: Central precocious puberty in a girl and early puberty in her brother caused by a novel mutation in the MKRN3 gene. J Clin Endocrinol Metab 2014, 99:E647-51.
  • [61]Macedo DB, Abreu AP, Reis AC, Montenegro LR, Dauber A, Beneduzzi D: Central precocious puberty that appears to be sporadic caused by paternally inherited mutations in the imprinted gene makorin ring finger 3. J Clin Endocrinol Metab 2014, 99:E1097-103.
  • [62]Linglart A, Bastepe M, Jüppner H: Similar clinical and laboratory findings in patients with symptomatic autosomal dominant and sporadic pseudohypoparathyroidism type Ib despite different epigenetic changes at the GNAS locus. Clin Endocrinol 2007, 67:822-31.
  • [63]de Nanclares GP, Fernández-Rebollo E, Santin I, García-Cuartero B, Gaztambide S, Menéndez E, Morales MJ, Pombo M, Bilbao JR, Barros F, Zazo N, Ahrens W, Jüppner H, Hiort O, Castaño L, Bastepe M: Epigenetic defects of GNAS in patients with pseudohypoparathyroidism and mild features of Albright’s hereditary osteodystrophy. J Clin Endocrinol Metab 2007, 96:2370-3.
  • [64]Mantovani G: Clinical review: Pseudohypoparathyroidism: diagnosis and treatment. J Clin Endocrinol Metab 2011, 96:3020-30.
  • [65]Richard N, Molin A, Coudray N, Rault-Guillaume P, Juppner H, Kottler ML: Paternal GNAS mutations lead to severe intrauterine growth retardation (IUGR) and provide evidence for a role of XLalphas in fetal development. J Clin Endocrinol Metab 2013, 98:E1549-56.
  • [66]Brehin AC, Colson C, Maupetit-Mehouas S, Grybek V, Richard N, Linglart A, et al.: Loss of methylation at GNAS exon A/B is associated with increased intrauterine growth. J Clin Endocrinol Metab 2015, 100:E623-31.
  • [67]Poke G, Doody M, Prado J, Gattas M: Segmental maternal UPD6 with prenatal growth restriction. Mol Syndromol 2013, 3:270-3.
  • [68]Ledbetter DH, Engel E: Uniparental disomy in humans: development of an imprinting map and its implications for prenatal diagnosis. Hum Mol Genet 1995, 4:1757-64.
  • [69]Yong PJ, Marion SA, Barrett IJ, Kalousek DK, Robinson WP: Evidence for imprinting on chromosome 16: the effect of uniparental disomy on the outcome of mosaic trisomy 16 pregnancies. Am J Med Genet 2002, 112:123-32.
  • [70]Mulchandani S, Bhoj E, Luo M, Powell-Hamilton N, Jenny K, Gripp K, et al. Maternal Uniparental Disomy of Chromosome 20: A Novel Imprinting Disorder of Growth Failure. Genet Med. in press.
  • [71]Mackay DJ, Eggermann T, Buiting K, Garin I, Netchine I, Linglart A, de Nanclares GP: Multilocus methylation defects in imprinting disorders. Biomol Concepts 2015, 6:47-57.
  • [72]Mackay DJ, Callaway JL, Marks SM, White HE, Acerini CL, Boonen SE, et al.: Hypomethylation of multiple imprinted loci in individuals with transient neonatal diabetes is associated with mutations in ZFP57. Nat Genet 2008, 40:949-51.
  • [73]Meyer E, Lim D, Pasha S, Tee LJ, Rahman F, Yates JR, et al.: Germline mutation in NLRP2 (NALP2) in a familial imprinting disorder (Beckwith-Wiedemann Syndrome). PLoS Genet 2009., 5Article ID e1000423
  • [74]Murdoch S, Mazhar B, Seoud M, Khan R, Kuick R, Bagga R, et al.: Mutations in NALP7 cause recurrent hydatidiform moles and reproductive wastage in humans. Nat Genet 2006, 38:300-2.
  • [75]Docherty LE, Rezwan FI, Poole RL, Turner CL, Kivuva E, Maher ER, et al.: Mutations in NLRP5 are associated with reproductive wastage and multilocus imprinting disorders in humans. Nat Commun 2015, 6:8086.
  • [76]Varrault A, Gueydan C, Bellmann A, Houssami S, Aknin C, Severac D, et al.: Zac1 regulates an imprinted gene network critically involved in the control of embryonic growth. Dev Cell 2006, 11:711-22.
  • [77]Al Adhami H, Evano B, Le Digarcher A, Gueydan C, Dubois E, et al.: A systems-level approach to parental genomic imprinting: the imprinted gene network includes extracellular matrix genes and regulates cell cycle exit and differentiation. Genome Res 2015, 25:353-67.
  • [78]Iglesias-Platas I, Martin-Trujillo A, Petazzi P, Guillaumet-Adkins A, Esteller M, Monk D: Altered expression of the imprinted transcription factor PLAGL1 deregulates a network of genes in the human IUGR placenta. Hum Mol Genet 2014, 23:6275-85.
  • [79]Boucher J, Charalambous M, Zarse K, Mori MA, Kleinridders A, Ristow M, et al.: Insulin and insulin-like growth factor 1 receptors are required for normal expression of imprinted genes. Proc Natl Acad Sci U S A 2014, 111:14512-7.
  • [80]Stelzer Y, Sagi I, Yanuka O, Eiges R, Benvenisty N: The noncoding RNA IPW regulates the imprinted DLK1-DIO3 locus in an induced pluripotent stem cell model of Prader-Willi syndrome. Nat Genet 2014, 46:551-7.
  • [81]Hosoki K, Kagami M, Tanaka T, Kubota M, Kurosawa K, Kato M, et al.: Maternal uniparental disomy 14 syndrome demonstrates prader-willi syndrome-like phenotype. J Pediatr 2009, 155:900-903.
  • [82]Begemann M, Spengler S, Kordass U, Schröder C, Eggermann T: Segmental maternal uniparental disomy 7q associated with DLK1/GTL2 (14q32) hypomethylation. Am J Med Genet A 2012, 158:423-8.
  • [83]Wakeling EL, Amero SA, Alders M, Bliek J, Forsythe E, Kumar S, et al.: Epigenotype-phenotype correlations in Silver-Russell syndrome. J Med Genet 2010, 47:760-8.
  • [84]Kagami M, Kato F, Matsubara K, Sato T, Nishimura G, Ogata T: Relative frequency of underlying genetic causes for the development of UPD(14)pat-like phenotype. Eur J Hum Genet 2012, 20:928-932.
  • [85]Bird LM: Angelman syndrome: a review of clinical and molecular aspects. Appl Clin Genet 2014, 7:93-104.
  • [86]Maupetit-Méhouas S, Azzi S, Steunou V, Sakakini N, Silve C, Reynes C, et al.: Simultaneous hyper- and hypomethylation at imprinted loci in a subset of patients with GNAS epimutations underlies a complex and different mechanism of multilocus methylation defect in pseudohypoparathyroidism type 1b. Hum Mutat 2013, 34:1172-80.
  • [87]Wollmann HA, Kirchner T, Enders H, Preece MA, Ranke MB: Growth and symptoms in Silver-Russell syndrome: review on the basis of 386 patients. Eur J Pediatr 1995, 154:958-68.
  • [88]Driscoll DJ, Miller JL, Schwartz S, et al. Prader-Willi Syndrome. 1998 Oct 6 [Updated 2014 Jan 23]. In: Pagon RA, Adam MP, Ardinger HH, et al., editors. GeneReviews® [Internet]. Seattle (WA): University of Washington, Seattle; 1993-2015. Available from:. http://www.ncbi.nlm.nih.gov/books/NBK1330/ webcite
  文献评价指标  
  下载次数:36次 浏览次数:6次