期刊论文详细信息
Clinical Epigenetics
Congenital imprinting disorders: EUCID.net - a network to decipher their aetiology and to improve the diagnostic and clinical care
Eamonn R Maher5  Agnès Linglart1  Andrea Riccio6  Karin Grønskov2  Deborah Mackay4  David Monk8  Zeynep Tümer2  I Karen Temple4  Irène Netchine7  Thomas Eggermann3 
[1] INSERM U986, INSERM, Le Kremlin-Bicêtre, Paris, 94276, France;Clinical Genetic Clinic, Kennedy Center, Rigshospitalet, Copenhagen University Hospital, Glostrup 2600, Denmark;Department of Human Genetics, University Hospital, RWTH Aachen, Pauwelsstr. 30, Aachen, 52074, Germany;Human Genetics and Genomic Medicine, Faculty of Medicine University of Southampton, Wessex Clinical Genetics Service, Princess Anne Hospital, Coxford Road, Southampton SO16 5YA, UK;Department of Medical Genetics, NIHR Cambridge Biomedical Research Centre, University of Cambridge, Cambridge CB2 OXY, UK;Institute of Genetics and Biophysics—ABT, CNR, Napoli, Italy;Pediatric Endocrinology, 3APHP, Armand Trousseau Hospital, Paris 75012, France;Imprinting and Cancer Group, Cancer Epigenetic and Biology Program (PEBC), Institut d’Investigació Biomedica de Bellvitge (IDIBELL), Hospital Duran i Reynals, Barcelona, 08907, Spain
关键词: Networking;    EUCID.net;    Uniparental disomy;    Epimutation;    Imprinted genes;    Imprinting disorders;   
Others  :  1147826
DOI  :  10.1186/s13148-015-0050-z
 received in 2014-09-12, accepted in 2015-01-26,  发布年份 2015
PDF
【 摘 要 】

Imprinting disorders (IDs) are a group of eight rare but probably underdiagnosed congenital diseases affecting growth, development and metabolism. They are caused by similar molecular changes affecting regulation, dosage or the genomic sequence of imprinted genes. Each ID is characterised by specific clinical features, and, as each appeared to be associated with specific imprinting defects, they have been widely regarded as separate entities. However, they share clinical characteristics and can show overlapping molecular alterations. Nevertheless, IDs are usually studied separately despite their common underlying (epi)genetic aetiologies, and their basic pathogenesis and long-term clinical consequences remain largely unknown. Efforts to elucidate the aetiology of IDs are currently fragmented across Europe, and standardisation of diagnostic and clinical management is lacking. The new consortium EUCID.net (European network of congenital imprinting disorders) now aims to promote better clinical care and scientific investigation of imprinting disorders by establishing a concerted multidisciplinary alliance of clinicians, researchers, patients and families. By encompassing all IDs and establishing a wide ranging and collaborative network, EUCID.net brings together a wide variety of expertise and interests to engender new collaborations and initiatives.

【 授权许可】

   
2015 Eggermann et al.; licensee BioMed Central.

【 预 览 】
附件列表
Files Size Format View
20150404044928807.pdf 1055KB PDF download
Figure 2. 81KB Image download
Figure 1. 59KB Image download
【 图 表 】

Figure 1.

Figure 2.

【 参考文献 】
  • [1]Reik W, Walter J: Genomic imprinting: parental influence on the genome. Nat Rev Genet 2001, 2:21-32.
  • [2]Horsthemke B: Mechanisms of imprint dysregulation. Am J Med Genet C 2010, 154C:321-8.
  • [3]Demars J, Gicquel C: Epigenetic and genetic disturbance of the imprinted 11p15 region in Beckwith-Wiedemann and Silver-Russell syndromes. Clin Genet 2012, 81:350-61.
  • [4]Delaval K, Wagschal A, Feil R: Epigenetic deregulation of imprinting in congenital diseases of aberrant growth. Bioessays 2006, 28:453-9.
  • [5]Kacem S, Feil R: Chromatin mechanisms in genomic imprinting. Mamm Genome 2009, 20:544-56.
  • [6]Kalish JM, Conlin LK, Bhatti TR, Dubbs HA, Harris MC, Izumi K, et al.: Clinical features of three girls with mosaic genome-wide paternal uniparental isodisomy. Am J Med Genet A 2013, 161:1929-39.
  • [7]Temple IK, Gardner RJ, Robinson DO, Kibirige MS, Ferguson AW, Baum JD, et al.: Further evidence for an imprinted gene for neonatal diabetes localised to chromosome 6q22-q23. Hum Mol Genet 1996, 5:1117-21.
  • [8]Temple IK, Shield JP: 6q24 transient neonatal diabetes. Rev Endocr Metab Disord 2010, 11:199-204.
  • [9]Netchine I, Rossignol S, Dufourg MN, Azzi S, Rousseau A, Perin L, et al.: 11p15 imprinting center region 1 loss of methylation is a common and specific cause of typical Russell-Silver syndrome: clinical scoring system and epigenetic-phenotypic correlations. J Clin Endocrinol Metab 2007, 92:3148-54.
  • [10]Abu-Amero S, Monk D, Frost J, Preece M, Stanier P, Moore GE: The genetic aetiology of Silver-Russell syndrome. J Med Genet 2008, 45:193-9.
  • [11]Bruce S, Hannula-Jouppi K, Puoskari M, Fransson I, Simola KO, Lipsanen-Nyman M, et al.: Submicroscopic genomic alterations in Silver-Russell syndrome and Silver-Russell-like patients. J Med Genet 2010, 47:816-22.
  • [12]Spengler S, Begemann M, Ortiz Brüchle N, Baudis M, Denecke B, Kroisel PM, et al.: Molecular karyotyping as a relevant diagnostic tool in children with growth retardation with Silver-Russell features. J Pediatr 2012, 161:933-42.
  • [13]Cooper WN, Luharia A, Evans GA, Raza H, Haire AC, Grundy R, et al.: Molecular subtypes and phenotypic expression of Beckwith-Wiedemann syndrome. Eur J Hum Genet 2005, 13:1025-32.
  • [14]Choufani S, Shuman C, Weksberg R: Beckwith-Wiedemann syndrome. Am J Med Genet 2010, 154C:343-54.
  • [15]Sparago A, Cerrato F, Vernucci M, Ferrero GB, Silengo MC, Riccio A: Microdeletions in the human H19 DMR result in loss of IGF2 imprinting and Beckwith-Wiedemann syndrome. Nat Genet 2004, 36:958-60.
  • [16]Demars J, Shmela ME, Rossignol S, Okabe J, Netchine I, Azzi S, et al.: Analysis of the IGF2/H19 imprinting control region uncovers new genetic defects, including mutations of OCT-binding sequences, in patients with 11p15 fetal growth disorders. Hum Mol Genet 2010, 19:803-14.
  • [17]Ibrahim A, Kirby G, Hardy C, Dias RP, Tee L, Lim D, et al.: Methylation analysis and diagnostics of Beckwith-Wiedemann syndrome in 1,000 subjects. Clin Epigenetics 2014, 6:11. BioMed Central Full Text
  • [18]Temple IK, Cockwell A, Hassold T, Pettay D, Jacobs P: Maternal uniparental disomy for chromosome 14. J Med Genet 1991, 28:511-4.
  • [19]Wang JC, Passage MB, Yen PH, Shapiro LJ, Mohandas TK: Uniparental heterodisomy for chromosome 14 in a phenotypically abnormal familial balanced 13/14 Robertsonian translocation carrier. Am J Hum Genet 1991, 48:1069-74.
  • [20]Temple IK, Shrubb V, Lever M, Bullman H, Mackay DJ: Isolated imprinting mutation of the DLK1/GTL2 locus associated with a clinical presentation of maternal uniparental disomy of chromosome 14. J Med Genet 2007, 44:637-40.
  • [21]Kagami M, Sekita Y, Nishimura G, Irie M, Kato F, Okada M, et al.: Deletions and epimutations affecting the human 14q32.2 imprinted region in individuals with paternal and maternal upd(14)-like phenotypes. Nat Genet 2008, 40:237-42.
  • [22]Goldstone AP: Prader-Willi syndrome: advances in genetics, pathophysiology and treatment. Trends Endocrinol Metab 2004, 15:12-20.
  • [23]Williams CA, Beaudet AL, Clayton-Smith J, Knoll JH, Kyllerman M, Laan LA, et al.: Angelman 2005: updated consensus for diagnostic criteria. Am J Med Genet 2005, 2006(140A):413-8.
  • [24]Kelsey G: Imprinting on chromosome 20: tissue-specific imprinting and imprinting mutations in the GNAS locus. Am J Med Genet 2010, 154C:377-86.
  • [25]Linglart A, Maupetit-Méhouas S, Silve C: GNAS-related loss-of-function disorders and the role of imprinting. Horm Res Paediatr 2013, 29:119-29.
  • [26]Eggermann T, Heilsberg AK, Bens S, Siebert R, Beygo J, Buiting K, et al.: Additional molecular findings in 11p15-associated imprinting disorders: an urgent need for multi-locus testing. J Mol Med 2014, 92:769-77.
  • [27]Begemann M, Spengler S, Kordaß U, Schröder C, Eggermann T: Segmental maternal uniparental disomy 7q associated with DLK1/GTL2 (14q32) hypomethylation. Am J Med Genet A 2012, 158A:423-8.
  • [28]Abi Habib W, Azzi S, Brioude F, Steunou V, Thibaud N, Neves CD, et al.: Extensive investigation of the IGF2/H19 imprinting control region reveals novel OCT4/SOX2 binding site defects associated with specific methylation patterns in Beckwith-Wiedemann syndrome. Hum Mol Genet 2014, 23:5763-73.
  • [29]Beygo J, Citro V, Sparago A, De Crescenzo A, Cerrato F, Heitmann M, et al.: The molecular function and clinical phenotype of partial deletions of the IGF2/H19 imprinting control region depends on the spatial arrangement of the remaining CTCF-binding sites. Hum Mol Genet 2013, 22:544-57.
  • [30]Poole RL, Leith DJ, Docherty LE, Shmela ME, Gicquel C, Splitt M, et al.: Beckwith-Wiedemann syndrome caused by maternally inherited mutation of an OCT-binding motif in the IGF2/H19-imprinting control region, ICR1. Eur J Hum Genet 2012, 20:240-3.
  • [31]Meyer E, Lim D, Pasha S, Tee LJ, Rahman F, Yates JR, et al.: Germline mutation in NLRP2 (NALP2) in a familial imprinting disorder (Beckwith-Wiedemann Syndrome). PLoS Genet 2009, 5:e1000423.
  • [32]Mackay DJ, Callaway JL, Marks SM, White HE, Acerini CL, Boonen SE, et al.: Hypomethylation of multiple imprinted loci in individuals with transient neonatal diabetes is associated with mutations in ZFP57. Nat Genet 2008, 40:949-51.
  • [33]Murdoch S, Mazhar B, Seoud M, Khan R, Kuick R, Bagga R, et al.: Mutations in NALP7 cause recurrent hydatidiform moles and reproductive wastage in humans. Nat Genet 2006, 38:300-2.
  • [34]Varrault A, Gueydan C, Bellmann A, Houssami S, Aknin C, Severac D, et al.: Zac1 regulates an imprinted gene network critically involved in the control of embryonic growth. Dev Cell 2006, 11:711-22.
  • [35]Eggermann T, Buiting K, Temple IK. Clinical utility gene card for: Silver-Russell syndrome. Eur J Hum Genet. 2011;19(3).
  • [36]Eggermann T, Algar E, Lapunzina P, Mackay D, Maher ER, Mannens M, et al. Clinical utility gene card for: Beckwith-Wiedemann syndrome. Eur J Hum Genet. 2014;22(3).
  • [37]Mackay D, Bens S, Perez de Nanclares G, Siebert R, Temple IK Clinical utility gene card for: transient Neonatal Diabetes Mellitus, 6q24-related. Eur J Hum Genet. 2014;26. doi:10.1038/ejhg.2014.27.
  • [38]Buiting K, Cassidy SB, Driscoll DJ, Gillessen-Kaesbach G, Kanber D, Tauber M, et al. Clinical utility card for: Prader-Willi syndrome. Eur J Hum Genet. 2014; 16. doi:10.1038/ejhg.2014.66.
  • [39]Buiting K, Clayton-Smith J, Driscoll DJ, Gillessen-Kaesbach G, Kanber D, Schwinger E, et al. Clinical utility gene card for: Angelman syndrome. Eur J Hum Genet. 2014;4. doi:10.1038/ejhg.2014.93.
  • [40]Mantovani G, Linglart A, Garin I, Silve C, Elli FM, de Nanclares GP. Clinical utility gene card for: pseudohypoparathyroidism. Eur J Hum Genet. 2013 Jun;21(6). doi:10.1038/ejhg.2012.211. Epub 2012 Sep 12.
  文献评价指标  
  下载次数:23次 浏览次数:6次